Awesome
InfoGCN
Official PyTorch implementation of "InfoGCN: Representation Learning for Human Skeleton-based Action Recognition", CVPR22.
Abstract
<img src="resources/main_fig.png" width="600" /> Human skeleton-based action recognition offers a valuable means to understand the intricacies of human behavior because it can handle the complex relationships between physical constraints and intention. Although several studies have focused on encoding a skeleton, less attention has been paid to embed this information into the latent representations of human action. InfoGCN proposes a learning framework for action recognition combining a novel learning objective and an encoding method. First, we design an information bottleneck-based learning objective to guide the model to learn informative but compact latent representations. To provide discriminative information for classifying action, we introduce attention-based graph convolution that captures the context-dependent intrinsic topology of human action. In addition, we present a multi-modal representation of the skeleton using the relative position of joints, designed to provide complementary spatial information for joints. InfoGCN surpasses the known state-of-the-art on multiple skeleton-based action recognition benchmarks with the accuracy of 93.0% on NTU RGB+D 60 cross-subject split, 89.8% on NTU RGB+D 120 cross-subject split, and 97.0% on NW-UCLA.Dependencies
- Python >= 3.6
- PyTorch >= 1.7.0
- NVIDIA Apex
- tqdm, tensorboardX, wandb
Data Preparation
Download datasets.
There are 3 datasets to download:
- NTU RGB+D 60 Skeleton
- NTU RGB+D 120 Skeleton
- NW-UCLA
NTU RGB+D 60 and 120
- Request dataset here: https://rose1.ntu.edu.sg/dataset/actionRecognition
- Download the skeleton-only datasets:
nturgbd_skeletons_s001_to_s017.zip
(NTU RGB+D 60)nturgbd_skeletons_s018_to_s032.zip
(NTU RGB+D 120)- Extract above files to
./data/nturgbd_raw
NW-UCLA
- Download dataset from CTR-GCN repo: https://github.com/Uason-Chen/CTR-GCN
- Move
all_sqe
to./data/NW-UCLA
Data Processing
Directory Structure
Put downloaded data into the following directory structure:
- data/
- NW-UCLA/
- all_sqe
... # raw data of NW-UCLA
- ntu/
- ntu120/
- nturgbd_raw/
- nturgb+d_skeletons/ # from `nturgbd_skeletons_s001_to_s017.zip`
...
- nturgb+d_skeletons120/ # from `nturgbd_skeletons_s018_to_s032.zip`
...
Generating Data
- Generate NTU RGB+D 60 or NTU RGB+D 120 dataset:
cd ./data/ntu # or cd ./data/ntu120
# Get skeleton of each performer
python get_raw_skes_data.py
# Remove the bad skeleton
python get_raw_denoised_data.py
# Transform the skeleton to the center of the first frame and vertically align to the ground
python seq_transformation.py
Training & Testing
Training
- We set the seed number for Numpy and PyTorch as 1 for reproducibility.
- If you want to reproduce our works, please find the details in the supplementary matrials. The hyperparameter setting differs depending on the training dataset.
- This is an exmaple command for training InfoGCN on NTU RGB+D 60 Cross Subject split. Please change the arguments if you want to customize the training.
--k
indicates k value of k-th mode represenation of skeleton. If you set--use_vel=True
, the model will be trained with motion.
python main.py --half=True --batch_size=128 --test_batch_size=128 \
--step 90 100 --num_epoch=110 --n_heads=3 --num_worker=4 --k=1 \
--dataset=ntu --num_class=60 --lambda_1=1e-4 --lambda_2=1e-1 --z_prior_gain=3 \
--use_vel=False --datacase=NTU60_CS --weight_decay=0.0005 \
--num_person=2 --num_point=25 --graph=graph.ntu_rgb_d.Graph --feeder=feeders.feeder_ntu.Feeder
Testing
- To test the trained models saved in <work_dir>, run the following command:
python main.py --half=True --test_batch_size=128 --n_heads=3 --num_worker=4 \
--k=1 --dataset=ntu --num_class=60 --use_vel=False --datacase=NTU60_CS \
--num_person=2 --num_point=25 --graph=graph.ntu_rgb_d.Graph --feeder=feeders.feeder_ntu.Feeder \
--phase=test --save_score=True --weights=<path_to_weight>
- To ensemble the results of different modalities, run the following command:
python ensemble.py \
--dataset=ntu/xsub \
--position_ckpts \
<work_dir_1>/files/best_score.pkl \
<work_dir_2>/files/best_score.pkl \
...
--motion_ckpts \
<work_dir_3>/files/best_score.pkl \
<work_dir_4>/files/best_score.pkl \
...
Acknowledgements
This repo is based on 2s-AGCN and CTR-GCN. The data processing is borrowed from SGN, HCN, and Predict & Cluster.
Thanks to the original authors for their work!