Home

Awesome

VoVNet.DeepLabV3

This is a pytorch implementation of DeepLabV3 with VoVNet Backbone Networks. This code based on pytorch implementation of DeepLabV3.pytorch.

Highlights

Comparison with ResNet & DenseNet backbones

BackbonemIoUinference time (ms)Memory usage (MB)Energy Efficiency (J/frame)DOWNLOAD
ResNet-5074.272421934.1link
DenseNet-20175.635039457link
VoV-3975.711919013.1link
ResNet-10176.8132286515.8link
DenseNet-16176.134945238.3link
VoV-5777.42522514.2link

ImageNet pretrained weight

Preparation

git clone https://github.com/stigma0617/VoVNet-DeepLabV3.git
cd VoVNet-DeepLabV3

mkdir -p data/pretrained
cd data/pretrained
wget https://www.dropbox.com/s/b826phjle6kbamu/vovnet57_statedict_norm.pth
wget https://www.dropbox.com/s/s7f4vyfybyc9qpr/vovnet39_statedict_norm.pth

PASCAL VOC 2012 Dataset


cd ~/VoVNet-DeeplabV3/data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_11-May-2012.tar
cd VOCdevkit/VOC2012/
wget http://cs.jhu.edu/~cxliu/data/SegmentationClassAug.zip
wget http://cs.jhu.edu/~cxliu/data/SegmentationClassAug_Visualization.zip
wget http://cs.jhu.edu/~cxliu/data/list.zip
unzip SegmentationClassAug.zip
unzip SegmentationClassAug_Visualization.zip
unzip list.zip

Training

Specifying a backbone network with --backbone,

For VoVNet-39, --backbone vovnet39

python main.py --train --exp bn_lr7e-3 --epochs 50 --base_lr 0.007 --backbone vovnet39

Evaluation

use the same command except delete --train

wget https://www.dropbox.com/s/oqqozntgrowmfb1/deeplab_vovnet39_pascal_v3_bn_lr7e-3_epoch50.pth -P data/
python main.py --exp bn_lr7e-3 --epochs 50 --base_lr 0.007 --backbone vovnet39