Awesome
<p align="center"> <a href="https://empyrical.ml4trading.io"> <img src="https://i.imgur.com/PbZNeud.png" width="35%"> </a> </p>
Common financial return and risk metrics in Python.
Installation
empyrical requires Python 3.9+. You can install it using pip
:
pip install empyrical-reloaded
or conda
from the conda-forge
channel
conda install empyrical-reloaded -c conda-forge
empyrical requires and installs the following packages while executing the above commands:
- numpy>=1.23.5
- pandas>=1.3.0
- scipy>=0.15.1
Note that Numpy>=2.0 requires pandas>=2.2.2. If you are using an older version of pandas, you may need to upgrade accordingly, otherwise you may encounter compatibility issues.
Optional dependencies include yfinance to download price data from Yahoo! Finance and pandas-datareader to access Fama-French risk factors and FRED treasury yields.
Note that
pandas-datareader
is not compatible with Python>=3.12.
To install the optional dependencies, use:
pip install empyrical-reloaded[yfinance]
or
pip install empyrical-reloaded[datreader]
or
pip install empyrical-reloaded[yfinance,datreader]
Usage
Simple Statistics
Empyrical computes basic metrics from returns and volatility to alpha and beta, Value at Risk, and Shorpe or Sortino ratios.
import numpy as np
from empyrical import max_drawdown, alpha_beta
returns = np.array([.01, .02, .03, -.4, -.06, -.02])
benchmark_returns = np.array([.02, .02, .03, -.35, -.05, -.01])
# calculate the max drawdown
max_drawdown(returns)
# calculate alpha and beta
alpha, beta = alpha_beta(returns, benchmark_returns)
Rolling Measures
Empyrical also aggregates return and risk metrics for rolling windows:
import numpy as np
from empyrical import roll_max_drawdown
returns = np.array([.01, .02, .03, -.4, -.06, -.02])
# calculate the rolling max drawdown
roll_max_drawdown(returns, window=3)
Pandas Support
Empyrical also works with both NumPy arrays and Pandas data structures:
import pandas as pd
from empyrical import roll_up_capture, capture
returns = pd.Series([.01, .02, .03, -.4, -.06, -.02])
factor_returns = pd.Series([.02, .01, .03, -.01, -.02, .02])
# calculate a capture ratio
capture(returns, factor_returns)
-0.147387712263491
Fama-French Risk Factors
Empyrical downloads Fama-French risk factors from 1970 onward:
Note: requires optional dependency
pandas-datareader
- see installation instructions above.gst
import pandas as pd
import empyrical as emp
risk_factors = emp.utils.get_fama_french()
pd.concat([risk_factors.head(), risk_factors.tail()])
Mkt - RF
SMB
HML
RF
Mom
Date
1970 - 01 - 02
00: 00:00 + 00: 00
0.0118
0.0129
0.0101
0.00029 - 0.0340
1970 - 01 - 05
00: 00:00 + 00: 00
0.0059
0.0067
0.0072
0.00029 - 0.0153
1970 - 01 - 06
00: 00:00 + 00: 00 - 0.0074
0.0010
0.0021
0.00029
0.0038
1970 - 01 - 07
00: 00:00 + 00: 00 - 0.0015
0.0040 - 0.0033
0.00029
0.0011
1970 - 01 - 0
8
00: 00:00 + 00: 00
0.0004
0.0018 - 0.0017
0.00029
0.0033
2024 - 03 - 22
00: 00:00 + 00: 00 - 0.0023 - 0.0087 - 0.0053
0.00021
0.0043
2024 - 03 - 25
00: 00:00 + 00: 00 - 0.0026 - 0.0024
0.0088
0.00021 - 0.0034
2024 - 03 - 26
00: 00:00 + 00: 00 - 0.0026
0.0009 - 0.0013
0.00021
0.0009
2024 - 03 - 27
00: 00:00 + 00: 00
0.0088
0.0104
0.0091
0.00021 - 0.0134
2024 - 03 - 28
00: 00:00 + 00: 00
0.0010
0.0029
0.0048
0.00021 - 0.0044
Asset Prices and Benchmark Returns
Empyrical use yfinance to download price data from Yahoo! Finance. To obtain the S&P returns since 1950, use:
Note: requires optional dependency
yfinance
- see installation instructions above.
import empyrical as emp
symbol = '^GSPC'
returns = emp.utils.get_symbol_returns_from_yahoo(symbol,
start='1950-01-01')
import seaborn as sns # requires separate installation
import matplotlib.pyplot as plt # requires separate installation
fig, axes = plt.subplots(ncols=2, figsize=(14, 5))
with sns.axes_style('whitegrid'):
returns.plot(ax=axes[0], rot=0, title='Time Series', legend=False)
sns.histplot(returns, ax=axes[1], legend=False)
axes[1].set_title('Histogram')
sns.despine()
plt.tight_layout()
plt.suptitle('Daily S&P 500 Returns')
<a href="https://empyrical.ml4trading.io">
<img src="https://i.imgur.com/0PSxfSI.png" width="100%">
</a>
Documentation
See the documentation for details on the API.
Support
Please open an issue for support.
Contributing
Please contribute using Github Flow. Create a branch, add commits, and open a pull request.
Testing
- install requirements
- "pytest>=6.2.0",
pytest tests