Home

Awesome

Thinking in tensors, writing in PyTorch

A hands-on deep learning introduction, from pieces.

For an interactive, installation-free version, use Colab: https://colab.research.google.com/github/stared/thinking-in-tensors-writing-in-pytorch/

By Piotr Migdał et al. (Weronika Ormaniec, possibly others)

“Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard Feynman

“Scientists start out doing work that's perfect, in the sense that they're just trying to reproduce work someone else has already done for them. Eventually, they get to the point where they can do original work. Whereas hackers, from the start, are doing original work; it's just very bad. So hackers start original, and get good, and scientists start good, and get original.” - Paul Graham in Hackers and Painters

Supporters

This project supported by: Jacek Migdał, Marek Cichy. Join the sponsors - show your ❤️ and support! It will give me time and energy to work on this project!

This project benefited from University of Silesia in Katowice course, which they let me to open source.

What's that?

Mathematical concepts behind deep learning using PyTorch 1.0.

Why not something else?

There are quite a few practical introductions to deep learning. I recommend Deep Learning in Python by François Chollet (the Keras author). Or you want, you can classify small pictures, or extraterrestrial beings, today.

When it comes to the mathematical background, Deep Learning Book by Ian Goodfellow et al. is a great starting point, giving a lot of overview. Though, it requires a lot of interest in maths. Convolutional networks start well after page 300.

I struggled to find something in the middle ground - showing mathematical foundations of deep learning, step by step, at the same time translating it into code. The closest example is CS231n: Convolutional Neural Networks for Visual Recognition (which is, IMHO, a masterpiece). Though, I believe that instead of using NumPy we can use PyTorch, giving a smooth transition between mathematic ideas and a practical, working code.

Of course, there are quite a few awesome posts, notebooks and visualizations. I try to link to the ones that are useful for reader. In particular, I maintain a collaborative list of Interactive Machine Learning, Deep Learning and Statistics websites.

Contribute!

Crucially, this course is for you, the reader. If you are interested in one topic, let us know! There is nothing more inspiring that eager readers.

Style

Adverts

A few links of mine: