Home

Awesome

<br /> <div align="center"> <h1 align="center"><img src="https://i.ibb.co/BNkhQH3/pyvene-logo.png"></h1> <a href="https://arxiv.org/abs/2403.07809"><strong>Read our paper »</strong></a> | <a href="https://stanfordnlp.github.io/pyvene/"><strong>Read the docs »</strong></a> </div> <br /> <a href="https://pypi.org/project/pyvene/"><img src="https://img.shields.io/pepy/dt/pyvene?color=green"></img></a> <a href="https://pypi.org/project/pyvene/"><img src="https://img.shields.io/pypi/v/pyvene?color=red"></img></a> <a href="https://pypi.org/project/pyvene/"><img src="https://img.shields.io/pypi/l/pyvene?color=blue"></img></a>

A Library for Understanding and Improving PyTorch Models via Interventions

pyvene is an open-source Python library for intervening on the internal states of PyTorch models. Interventions are an important operation in many areas of AI, including model editing, steering, robustness, and interpretability.

pyvene has many features that make interventions easy:

pyvene is under active development and constantly being improved 🫡

[!IMPORTANT] Read the pyvene docs at https://stanfordnlp.github.io/pyvene/!

Installation

To install the latest stable version of pyvene:

pip install pyvene

Alternatively, to install a bleeding-edge version, you can clone the repo and install:

git clone git@github.com:stanfordnlp/pyvene.git
cd pyvene
pip install -e .

When you want to update, you can just run git pull in the cloned directory.

We suggest importing the library as:

import pyvene as pv

Citation

If you use this repository, please consider to cite our library paper:

@inproceedings{wu-etal-2024-pyvene,
    title = "pyvene: A Library for Understanding and Improving {P}y{T}orch Models via Interventions",
    author = "Wu, Zhengxuan and Geiger, Atticus and Arora, Aryaman and Huang, Jing and Wang, Zheng and Goodman, Noah and Manning, Christopher and Potts, Christopher",
    editor = "Chang, Kai-Wei and Lee, Annie and Rajani, Nazneen",
    booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)",
    month = jun,
    year = "2024",
    address = "Mexico City, Mexico",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.naacl-demo.16",
    pages = "158--165",
}

Star History

Star History Chart