Awesome
Auto-Generate-WLs
Code repository supporting the paper "Auto-Generating Weak Labels for Real & Synthetic Data to Improve Label-Scarce Medical Image Segmentation," which was accepted at MIDL 2024. For reproducibility, we have included all datasets + generated weak labels used in the paper.
Using the code:
1. Prepare codebase and data
- Clone this repository:
git clone https://github.com/stanfordmlgroup/Auto-Generate-WLs
cd Auto-Generate-WLs
- Create a conda environment:
conda env create -f environment.yml
conda activate auto_wl
- Place the gold-standard (GS) dataset and unlabeled dataset under
pytorch-nested-unet/inputs
in the following format:
inputs
└── <dataset name>
├── images
| ├── 001.png
│ ├── 002.png
│ ├── 003.png
│ ├── ...
└── masks
├── 0
| ├── 001.png
| ├── 002.png
| ├── 003.png
| ├── ...
└──
We also provide the gold-standard dataset and weak labels used in this paper for reproducibility.
Datasets:
2. Train a model on the gold-standard dataset
Next, train an initial model on the gold-standard dataset. This will be used to generate prompts for MedSAM and generate the weak labels:
cd pytorch-nested-unet
python train.py --dataset <gs dataset> --arch NestedUNet
--img_ext .png --mask_ext .png --batch_size 4
--input_w 256 --input_h 256
For example:
python train.py --dataset busi-25-small --arch NestedUNet
--img_ext .png --mask_ext .png --batch_size 4
--input_w 256 --input_h 256
Then, generate predictions on the unlabeled dataset using this model:
python eval.py --name <gs dataset>_NestedUNet_256_woDS
--dataset <unlabeled dataset>
For example:
python eval.py --name busi-25-small_NestedUNet_256_woDS
--dataset busi-25-aug-25
This will output the predictions to a outputs/<model name>/<dataset name>/0
(the prediction path).
3. Generate predictions on the unlabeled dataset
Download the MedSAM bounding-box checkpoint and/or the MedSAM point-prompt checkpoint here and place them in the folder generate-weak-labels/MedSAM/work_dir/MedSAM/
.Run the notebook generate-weak-labels/generate-masks.ipynb
, which will generate the weak labels and provide a visualization of the coarse labels, prompts, and weak labels.
4. Train a model on the augmented dataset
Now, we are ready to train a model on the augmented dataset, as follows:
python train.py --dataset <augmented dataset> --arch NestedUNet
--img_ext .png --mask_ext .png --batch_size 4
--input_w 256 --input_h 256
For example:
python train.py --dataset busi-box-aug-50 --arch NestedUNet
--img_ext .png --mask_ext .png --batch_size 4
--input_w 256 --input_h 256
Then, we can evaluate both our base model trained on the gold-standard dataset as well as the model trained on the augmented dataset, as follows:
python eval.py --name <gs dataset>_NestedUNet_256_woDS
--dataset <test dataset>
python eval.py --name <augmented dataset>_NestedUNet_256_woDS
-- dataset <test dataset>
and compare the resulting DICE and IOU. You can also compare the predictions in the respective output folders of the models.