Home

Awesome

SIOD: Single Instance Annotated Per Category Per Image for Object Detection

Main Results

DetectorTask$AP@\mathbb{S}$$AP@\mathbb{S}_0$$AP@\mathbb{S}_3$$AP@\mathbb{S}_5$$AP@\mathbb{S}_7$$AP@\mathbb{S}_9$
CenterNet-Res18FSOD17.328.124.017.18.81.5
CenterNet-Res18SIOD(base)13.925.118.512.36.11.4
CetnerNet-Res18SIOD(DMiner)16.8(+2.9)26.6(+1.5)22.4(+3.9)17.1(+4.8)9.4(+3.3)2.1(+0.7)
CenterNet-Res101FSOD22.634.230.323.613.63.1
CenterNet-Res101SIOD(base)15.127.820.913.36.11.1
CenterNet-Res101SIOD(DMiner)19.7(+4.6)29.8(+2.0)26.0(+5.1)20.5(+7.2)12.2(+6.1)2.9(+1.8)

Dataset

Preparations

1. pip install -r requirements.txt 
2. install pytorch=1.7.0(higher version has some problems in following installation of dcnv2) 
3. install dcnv2
   cd src/lib/models/networks/DCNv2
   sh make.sh 
4. install cocoapi
   cd src/lib/datasets/dataset/cocoapi/
   sh install.sh 
5. install nms
   cd src/lib/external
   make 
6. create soft link for the data
   vim link.sh
   sh link.sh 

Training

Take CenterNet-Res18 for example:

Evaluation

Evaluate the detector with new Score-aware Detection Evaluation Protocol.

# modify the parameter "load_model" accordingly
sh test_resdcn18.sh

Visualization

Prepare some images and modified visualize.sh accordingly.

sh visualize.sh