Awesome
Code for paper Margin-aware Adversarial Domain Adaptation with Optimal Transport
Dependencies:
- Numpy >= 1.18.1
- POT >= 0.6.0
- CVXPY >= 1.0.25
- MOSEK >= 9.1.9
- Scikit-Learn >= 0.22.1
Scripts for experiments:
- Moons:
- cross validation:
cross_valid.py
(might take up to 90 minutes to run) - testing:
postprocessing_cross_valid.py
- cross validation:
- Amazon:
- Data download link
- testing:
postprocessing_cross_valid_amazon.py
(with fixed hyperparameters indicated in the main paper)
Scripts for figures
- Moons:
postprocessing_cross_valid.py
- Loss function <img src="https://render.githubusercontent.com/render/math?math=l^{\rho, \beta}">:
loss_funcs.py
- Smooth proxies (supplementary):
proxies.py
(end of script, to decomment)
Other scripts:
- Main class for our algorithm:
madaot.py
- Cross validation (supports parallelism):
myDA.py
- Algorithm computing the transport plan at each step (decribed in Blankenship and Falk, 1976):
advEmd.py