Home

Awesome

DeepSNAP

PyPI License Build Status Code Coverage Downloads Repo size

Documentation | Examples | Colab Notebooks

DeepSNAP is a Python library to assist efficient deep learning on graphs. DeepSNAP features in its support for flexible graph manipulation, standard pipeline, heterogeneous graphs and simple API.

DeepSNAP bridges powerful graph libraries such as NetworkX and deep learning framework PyTorch Geometric. With an intuitive and easy-than-ever API, DeepSNAP addresses the above pain points:

Installation

To install the DeepSNAP, ensure PyTorch Geometric and NetworkX are installed. Then:

$ pip install deepsnap

Or build from source:

$ git clone https://github.com/snap-stanford/deepsnap
$ cd deepsnap
$ pip install .

Example

Examples using DeepSNAP are provided within the code repository.

$ git clone https://github.com/snap-stanford/deepsnap

Node classification:

$ cd deepsnap/examples/node_classification # node classification
$ python node_classification_planetoid.py

Link prediction:

$ cd deepsnap/examples/link_prediction # link prediction
$ python link_prediction_cora.py

Graph classification:

$ cd deepsnap/examples/graph_classification # graph classification
$ python graph_classification_TU.py

Documentation

For comprehensive overview, introduction, tutorial and example, please refer to Full Documentation