Awesome
Inductive Representation Learning in Temporal Networks via Causal Anonymous Walks
Introduction
This is the reference PyTorch implementation of the paper:
Inductive Representation Learning in Temporal Networks via Causal Anonymous Walks.
The project website is: https://snap.stanford.edu/caw/
Authors
Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, Pan Li
Requirements
python >= 3.7
,PyTorch >= 1.4
, please refer to their official websites for installation details.- Other dependencies:
pandas==0.24.2
tqdm==4.41.1
numpy==1.16.4
scikit_learn==0.22.1
matploblib==3.3.1
numba==0.51.2
Refer to environment.yml
for more details.
Dataset and preprocessing
Option 1: Use our preprocessed data
We provide preprocessed datasets: Reddit, Wikipedia, Enron, and UCI. Download them from here to processed/
. Then run the following:
cd processed/
unzip data.zip
You may check that each dataset corresponds to three files: one .csv
containing timestamped links, and two .npy
as node & link features. Note that some datasets do not have node & link features, in which case the .npy
files will be all zeros.
Option 2: Use your own data
Put your data under processed
folder. The required input data includes ml_${DATA_NAME}.csv
, ml_${DATA_NAME}.npy
and ml_${DATA_NAME}_node.npy
. They store the edge linkages, edge features and node features respectively.
The .csv
file has following columns
u, i, ts, label, idx
, which represents source node index, target node index, time stamp, edge label and the edge index.
ml_${DATA_NAME}.npy
has shape of [#temporal edges + 1, edge features dimention]. Similarly, ml_${DATA_NAME}_node.npy
has shape of [#nodes + 1, node features dimension].
All node index starts from 1
. The zero index is reserved for null
during padding operations. So the maximum of node index equals to the total number of nodes. Similarly, maxinum of edge index equals to the total number of temporal edges. The padding embeddings or the null embeddings is a vector of zeros.
We also recommend discretizing the timestamps (ts
) into integers for better indexing.
Training Commands
Examples:
- To train CAW-N-mean with Wikipedia dataset in inductive training, sampling 64 length-2 CAWs every node, and with alpha = 1e-5:
python main.py -d wikipedia --pos_dim 108 --bs 32 --n_degree 64 1 --mode i --bias 1e-5 --pos_enc lp --walk_pool sum --seed 0
- To train CAW-N-attn with UCI dataset in transductive mode, sampling 32 length-1 CAWs every node, with alpha = 1e-6, and using another random seed 123:
python main.py -d uci --pos_dim 100 --bs 32 --n_degree 32 --n_layer 1 --mode t --bias 1e-6 --pos_enc lp --walk_pool attn --seed 123
Detailed logs can be found in log/
, a one-line summary of the evaluation result will also be written to log/oneline_summary.log
upon completion.
Usage Summary
usage: Interface for Inductive Dynamic Representation Learning for Link Prediction on Temporal Graphs
[-h] [-d {wikipedia,reddit,socialevolve,uci,enron,socialevolve_1month,socialevolve_2weeks}] [-m {t,i}]
[--n_degree [N_DEGREE [N_DEGREE ...]]] [--n_layer N_LAYER] [--bias BIAS] [--agg {tree,walk}] [--pos_enc {spd,lp,saw}]
[--pos_dim POS_DIM] [--pos_sample {multinomial,binary}] [--walk_pool {attn,sum}] [--walk_n_head WALK_N_HEAD]
[--walk_mutual] [--walk_linear_out] [--attn_agg_method {attn,lstm,mean}] [--attn_mode {prod,map}]
[--attn_n_head ATTN_N_HEAD] [--time {time,pos,empty}] [--n_epoch N_EPOCH] [--bs BS] [--lr LR] [--drop_out DROP_OUT]
[--tolerance TOLERANCE] [--seed SEED] [--ngh_cache] [--gpu GPU] [--cpu_cores CPU_CORES] [--verbosity VERBOSITY]
Optional arguments
-h, --help show this help message and exit
-d {wikipedia,reddit,socialevolve,uci,enron,socialevolve_1month,socialevolve_2weeks}, --data {wikipedia,reddit,socialevolve,uci,enron,socialevolve_1month,socialevolve_2weeks}
data sources to use, try wikipedia or reddit
-m {t,i}, --mode {t,i}
transductive (t) or inductive (i)
--n_degree [N_DEGREE [N_DEGREE ...]]
a list of neighbor sampling numbers for different hops, when only a single element is input n_layer
will be activated
--n_layer N_LAYER number of network layers
--bias BIAS the hyperparameter alpha controlling sampling preference with time closeness, default to 0 which is
uniform sampling
--agg {tree,walk} tree based hierarchical aggregation or walk-based flat lstm aggregation
--pos_enc {spd,lp,saw}
way to encode distances, shortest-path distance or landing probabilities, or self-based anonymous
walk (baseline)
--pos_dim POS_DIM dimension of the positional embedding
--pos_sample {multinomial,binary}
two practically different sampling methods that are equivalent in theory
--walk_pool {attn,sum}
how to pool the encoded walks, using attention or simple sum, if sum will overwrite all the other
walk_ arguments
--walk_n_head WALK_N_HEAD
number of heads to use for walk attention
--walk_mutual whether to do mutual query for source and target node random walks
--walk_linear_out whether to linearly project each node's
--attn_agg_method {attn,lstm,mean}
local aggregation method, we only use the default here
--attn_mode {prod,map}
use dot product attention or mapping based, we only use the default here
--attn_n_head ATTN_N_HEAD
number of heads used in tree-shaped attention layer, we only use the default here
--time {time,pos,empty}
how to use time information, we only use the default here
--n_epoch N_EPOCH number of epochs
--bs BS batch_size
--lr LR learning rate
--drop_out DROP_OUT dropout probability for all dropout layers
--tolerance TOLERANCE
toleratd margainal improvement for early stopper
--seed SEED random seed for all randomized algorithms
--ngh_cache (currently not suggested due to overwhelming memory consumption) cache temporal neighbors previously
calculated to speed up repeated lookup
--gpu GPU which gpu to use
--cpu_cores CPU_CORES
number of cpu_cores used for position encoding
--verbosity VERBOSITY
verbosity of the program output
Acknowledgement
Our implementation adapts the code here as the code base and extensively adapts it to our purpose. We thank the authors for sharing their code.
Cite us
If you compare with, build on, or use aspects of the paper and/or code, please cite us:
@inproceedings{
wang2021inductive,
title={Inductive Representation Learning in Temporal Networks via Causal Anonymous Walks},
author={Yanbang Wang and Yen-Yu Chang and Yunyu Liu and Jure Leskovec and Pan Li},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=KYPz4YsCPj}
}