Awesome
DU-VAE
This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"
Acknowledgements
Our code is mainly based on this public code. Very thanks for its authors.
Requirements
- Python >= 3.6
- Pytorch >= 1.5.0
Data
Datastes used in this paper can be downloaded in this link, with the specific license if that is not based on MIT License.
Usage
Example script to train DU-VAE on text data:
python text.py --dataset yelp \
--device cuda:0 \
--gamma 0.5 \
--p_drop 0.2 \
--delta_rate 1 \
--kl_start 0 \
--warm_up 10
Example script to train DU-VAE on image data:
python3.6 image.py --dataset omniglot \
--device cuda:3 \
--kl_start 0 \
--warm_up 10 \
--gamma 0.5 \
--p_drop 0.1 \
--delta_rate 1 \
--dataset omniglot
Example script to train DU-IAF, a variant of DU-VAE, on text data:
python3.6 text_IAF.py --device cuda:2 \
--dataset yelp \
--gamma 0.6 \
--p_drop 0.3 \
--delta_rate 1 \
--kl_start 0 \
--warm_up 10 \
--flow_depth 2 \
--flow_width 60
Example script to train DU-IAF on image data:
python3.6 image_IAF.py --dataset omniglot\
--device cuda:3 \
--kl_start 0 \
--warm_up 10 \
--gamma 0.5 \
--p_drop 0.15\
--delta_rate 1 \
--flow_depth 2\
--flow_width 60
Here,
--dataset
specifies the dataset name, currently it supportssynthetic
,yahoo
,yelp
fortext.py
andomniglot
forimage.py
.--kl_start
represents starting KL weight (set to 1.0 to disable KL annealing)--warm_up
represents number of annealing epochs (KL weight increases fromkl_start
to 1.0 linearly in the firstwarm_up
epochs)--gamma
represents the parameter $\gamma$ in our Batch-Normalization approach, which should be more than 0 to use our model.--p_drop
represents the parameter $1-p$ in our Dropout approach, which denotes the percent of data to be ignored and should be ranged in (0,1).--delta_rate
represents the hyper-parameter $\alpha$ to controls the min value of the variance $\delta^2$--flow_depth
represents number of MADE layers used to implement DU-IAF.--flow_wdith
controls the hideen size in each IAF block, where we set the product between the value and the dimension of $z$ as the hidden size. For example, when we set--flow width 60
with the dimension of $z$ as 32, the hidden size of each IAF block is 1920.
Reference
If you find our methods or code helpful, please kindly cite the paper:
@inproceedings{shen2021regularizing,
title={Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness},
author={Shen, Dazhong and Qin, Chuan and Wang, Chao and Zhu, Hengshu and Chen, Enhong and Xiong, Hui},
booktitle={Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-21)},
year={2021}
}