Awesome
Introduction
This repository is the PyTorch code for the paper Decoupled Parallel Backpropagation with Convergence Guarantee" by Zhouyuan Huo, Bin Gu, Qian Yang and Huang, Heng, ICML 2018.
For any question or suggestions, feel free to contact zhouyuan.huo@pitt.edu
Dependencies
- Python 3.6.2 (Anaconda)
- PyTorch 0.3.1
- CUDA 8.0
Run
Clone and cd into the repo directory, run:
python main.py ./data/cifar.python --dataset cifar10 --arch resnet_ddg --epochs 300 --learning_rate 0.01 --schedule 150 225 --gammas 0.1 0.1 --batch_size 128 --manualSeed 2 --depth 110 --splits 2
Result
Experimental results for optimizing ResNet110 on CIFAR10 using DDG. <img src="results/result.jpg" width="400">
Note that to obtain the speedup in the paper, the code should be run in a machine with 4 GPUs.
Citation
@article{huo2018decoupled,
title={Decoupled Parallel Backpropagation with Convergence Guarantee},
author={Huo, Zhouyuan and Gu, Bin and Yang, Qian and Huang, Heng},
journal={arXiv preprint arXiv:1804.10574},
year={2018}
}