Awesome
SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis
Paper | Suppl
<!-- <br> -->Teng Hu, Ran Yi, Baihong Qian, Jiangning Zhang, Paul L. Rosin, and Yu-Kun Lai
<!-- <br> -->Prepare
conda create -n live python=3.7
conda activate live
conda install -y pytorch torchvision -c pytorch
conda install -y numpy scikit-image
conda install -y -c anaconda cmake
conda install -y -c conda-forge ffmpeg
pip install svgwrite svgpathtools cssutils numba torch-tools scikit-fmm easydict visdom
pip install opencv-python==4.5.4.60 # please install this version to avoid segmentation fault.
cd DiffVG
git submodule update --init --recursive
python setup.py install
cd ..
Training Step
(0) Prepare
Data prepare: Download the ImageNet dataset.
(1) Train the Coarse-stage Model
Put the downloaded Imagenet or any dataset you want into $path_to_the_dataset
.
Then, you can train the coarse-stage model by running:
python3 main_coarse.py --data_path=$path_to_the_dataset
After training, the checkpoints and logs are saved in the directory output_coarse
.
(2) Train the Refinement-stage Model
Coming soon
Citation
If you find this code helpful for your research, please cite:
@inproceedings{hu2024supersvg,
title={SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis},
author={Teng Hu and Ran Yi and Baihong Qian and Jiangning Zhang and Paul L. Rosin and Yu-Kun Lai},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2024}
}