Awesome
The Hitchhiker's Guide to Prior-Shift Adaptation
Suplementary material
This sample code for prior shift adaptation in supplementary_material
directory is a supplementary material for the paper:
Tomas Sipka, Milan Sulc and Jiri Matas. The Hitchhiker's Guide to Prior-Shift Adaptation. WACV, 2022.
See supplementary_material/example.ipynb for the usage of the methods and their comparison.
Prior-shift package
The code in prior_shift
directory can be used as python package, providing a convenient adapt_to_prior_shift
function for adapting your predictions to prior shift. See the sample usage in sample.ipynb.
Installation
Requirements:
numpy
sklearn
Copy prior_shift
directory into your project and import it.
Usage
You can adapt your predictions with default settings:
import prior_shift as ps
test_pred_adapted = ps.adapt_to_prior_shift(test_pred, val_pred, val_targets, train_pred)
or you can call the function with diffenrent arguments to change the algorithm or its hyperparameters:
adapt_to_prior_shift(test_pred, val_pred, val_targets, train_pred, train_targets, method, args)
Arguments:
test_pred: np.array (n_test, num_classes), predictions on test set, which should be adapted
val_pred: np.array (n_val, num_classes), predictions on validation set
val_targets: np.array (n_val,), ground truth labels coresponding to the predictions on
validation dataset
train_pred: np.array (n_train, num_classes), predictions on trainning set
train_targets: np.array (n_train,), ground truth labels coresponding to the predictions
on trainning dataset
method: str, the algorithm used for priors estimation, allowed values are "EM", "CM", "SCM",
"CM-L", "SCM-L", "CM-M", "SCM-M", as default SCM-L is used
args: Dict[str, Any], parameters used for the algorithm (see below)
Method's parameters:
EM
- "termination_difference" (float), default=0.001
- "trainset_prior" ({"classif", "count"}), default="classif"
CM
- "trainset_prior" ({"classif", "count"}), default="classif"
SCM
- "trainset_prior" ({"classif", "count"}), default="classif"
CM-L
- "lr" (float), default=1e-4<br/>
- "max_iter" (integer), default=1000
- "trainset_prior" ({"classif", "count"}), default="classif"
SCM-L
- "lr" (float), default=1e-3<br/>
- "max_iter" (integer), default=1000
- "alpha" (float), default=3
- "trainset_prior" ({"classif", "count"}), default="classif"
CM-M
- "lr" (float), default=1e-3<br/>
- "max_iter" (integer), default=1000
- "trainset_prior" ({"classif", "count"}), default="classif"
SCM-M
- "lr" (float), default=1e-3<br/>
- "max_iter" (integer), default=1000
- "alpha" (float), default=3
- "trainset_prior" ({"classif", "count"}), default="classif"
Notes
- EM algorithm does not require validation set (
val_pred
andval_targets
can be set toNone
). - Validation set can have arbitrary distribution.
- Using training set instead of validation set can lead to decreased performance due to overfitting.
- If
trainset_prior="classif"
thentrain_targets
can be set toNone
- If
trainset_prior="count"
thentrain_pred
can be set toNone
Citation
If you use the code please cite the paper:
@InProceedings{Sipka_2022_WACV,
author = {\v{S}ipka, Tom\'a\v{s} and \v{S}ulc, Milan and Matas, Ji\v{r}{\'\i}}},
title = {The Hitchhiker's Guide to Prior-Shift Adaptation},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022},
pages = {1516-1524}
}