Awesome
Heterophily Learning Network (HL-Net)
This is an official implementation for CVPR 2022 paper "HL-Net: Heterophily Learning Network for Scene Graph Generation".
Contents
Introduction
This project is based on the code of Scene Graph Benchmark in Pytorch.
Method overview
Installation
- Clone this repo
git clone https://github.com/siml3/HL-Net.git
cd HL-Net
- Create a conda virtual environment and activate it (optional)
conda create -n hlnet -y
conda activate hlnet
- Prepare proper pytorch environment for your device.
-
Install dependencies
conda install ipython conda install scipy conda install h5py pip install ninja yacs cython matplotlib tqdm opencv-python-headless overrides git clone https://github.com/cocodataset/cocoapi.git cd cocoapi/PythonAPI python setup.py build_ext install cd ../../ # GPU and Cuda environment is necessary for proper compilation of this repo git clone https://github.com/NVIDIA/apex.git cd apex python setup.py install --cuda_ext --cpp_ext cd ../
-
Compile extensions and install this repo in
develop
modepython setup.py build develop
Dataset
Please refer to the DATASET.md
Training
Detector Fine-tune (optional)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --master_port 10001 --nproc_per_node=4 tools/detector_pretrain_net.py --config-file "configs/e2e_relation_detector_X_101_32_8_FPN_1x.yaml" SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 DTYPE "float32" SOLVER.MAX_ITER 50000 SOLVER.STEPS "(30000, 45000)" SOLVER.VAL_PERIOD 2000 SOLVER.CHECKPOINT_PERIOD 2000 MODEL.RELATION_ON False SOLVER.PRE_VAL False OUTPUT_DIR /path/to/output
Training on Scene Graph Generation
The training scripts are available in the folder scripts
If you have multi gpus, try the command as the follows for SGCLS:
# four cards
PYTHONPATH=$PWD CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --master_port 10022 --nproc_per_node=4 tools/relation_train_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR "exp/HL-Net-sgcls" SOLVER.IMS_PER_BATCH 12 TEST.IMS_PER_BATCH 4 DTYPE "float16" SOLVER.PRE_VAL True MODEL.ROI_RELATION_HEAD.PREDICTOR HLNetPredictor MODEL.ROI_RELATION_HEAD.MP_LAYER_NUM 5 SOLVER.BASE_LR 0.0025 GLOVE_DIR glove MODEL.ROI_RELATION_HEAD.PPR_ALPHA -0.5
Testing
gpu_id=0,1
port=10086
gpu_num=2
output_dir="home/XXXX/exp/.."
PYTHONPATH=$PWD CUDA_VISIBLE_DEVICES=${gpu_id} python -m torch.distributed.launch --master_port ${port} --nproc_per_node=${gpu_num} tools/relation_test_net.py --config-file "${output_dir}/config.yml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False OUTPUT_DIR "${output_dir}" TEST.IMS_PER_BATCH ${gpu_num} DTYPE "float16" GLOVE_DIR glove
Models
Here we provide our pretrained model via BaiduNetDisk:
Link:https://pan.baidu.com/s/1ujghYTjDB8MEgujQVVhCEQ Extraction code:1020
or Google Drive:
Link:https://drive.google.com/drive/folders/1BWaS6Fy7imfKgt6lcRQvSRMZroFkz8LD?usp=sharing
Citation
If HL-Net is helpful for your research, we'd really appreciate it if you could cite this paper:
@inproceedings{lin2022hl,
title={HL-Net: Heterophily Learning Network for Scene Graph Generation},
author={Lin, Xin and Ding, Changxing and Zhan, Yibing and Li, Zijian and Tao, Dacheng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={19476--19485},
year={2022}
}