Home

Awesome

nexeval

<p align="center"> <img src="imgs/onediff_logo.png" height="100"> </p>
  1. Introduction 🌟
  2. Installation 🛠️
  3. Quick Start
  4. Qualitative Evaluation 🎨
  5. References 📚
  6. Citing 📖

Introduction

This repository is used for evaluating the quality of generation after compilation acceleration using OneDiff.

It can also serve as a benchmark for evaluating the performance of different text-to-image models.

Installation

  1. Prepare the OneDiff environment.

    Follow the instructions to install OneDiff and other dependencies:

  2. Prepare Benchmark environment.

    pip3 install -r requirements.txt
    pip3 install -e .
    

Quick Start

Evaluating the use of all generative models is divided into two steps, taking the kolors model as an example:

1. Generate benchmark images.

2. Test using multiple indicators with scripts.

bash scripts/run_kolors_tests.sh coco
bash scripts/run_kolors_tests.sh hps

A quality report can refer to: models/kolors/README.md

Qualitative evaluation

We collected several typical prompts to visualize the generated images for qualitative evaluation. These prompts reflect the model's semantic understanding, long text, detail, spatial relationships, diversity, clarity, and text embedding capabilities.

References

Citing

@misc{odeval,
  author = {Xiang Li and others},
  title = {odeval: A Library for benchmarking the accelerated generation quality},
  year = {2023},
  publisher = {SiliconFlow},
  howpublished = {\url{https://github.com/siliconflow/odeval}},
  note = {Accessed: 2024-07-26}
}