Awesome
HypLiLoc
(CVPR 2023) HypLiLoc: Towards Effective LiDAR Pose Regression with Hyperbolic Fusion
https://arxiv.org/abs/2304.00932
You can also view at https://youtu.be/qplZMOZG-7k
💥💥:racehorse::racehorse: We have refined the code structure. This new version can run at 80FPS on NVIDIA 3090 GPU or 150FPS on NVIDIA 4090 GPU!
-
Requirements
PyTorch installation (You may also use Pytorch2.0, which is also compatible):
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
You can also use the following script:
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
Other dependencies:
colour_demosaicing==0.2.2 geotorch==0.3.0 matplotlib==3.5.3 numpy==1.19.5 open3d==0.15.2 opencv_python==4.6.0.66 Pillow==9.3.0 scipy==1.9.1 setuptools==63.4.1 tqdm==4.64.0 transforms3d==0.4.1
-
Extra dependency pointnet2 installation
cd network/pointnet2 python setup.py install cd .. cd ..
-
Platform
Ubuntu 20.04 CUDA 11.6/11.8 python 3.8
-
Dataset
We currently provide the Oxford Radar dataset that has been pre-processed.
After downloading, you can unzip it and record the path, e.g.
/home/workstation/Radar_RobotCar/
Tips: You can better put the dataset under some folder supported by SSD to achieve fast reading speed.
-
Trained weights
We provide the trained optimal weights for the Full-8 route.
https://drive.google.com/file/d/1xunKg82BK2-yOyh7q04AOxL6qL5VKEQE/view?usp=share_link
After downloading, you can unzip it and put it under this repo's root, which will be like:
HypLiLoc/logs
-
Inference on the Full-8 route
We have refined the code structure, and the version can run at 140FPS !
python eval.py --data_dir /home/workstation/Radar_RobotCar/ --cuda 0 --scene full8
-
Train
python train.py --data_dir /home/workstation/Radar_RobotCar/ --cuda 0 --scene full8
-
Other information:
You can view tools/options.py to set running arguments.
-
Citation
@inproceedings{wang2023hypliloc, title={HypLiLoc: Towards Effective LiDAR Pose Regression with Hyperbolic Fusion}, author={Wang, Sijie and Kang, Qiyu and She, Rui and Wang, Wei and Zhao, Kai and Song, Yang and Tay, Wee Peng}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={5176--5185}, year={2023} }
-
Code reference
https://github.com/sijieaaa/RobustLoc