Home

Awesome

EfficientDet: Scalable and Efficient Object Detection

Introduction

Here is our pytorch implementation of the model described in the paper EfficientDet: Scalable and Efficient Object Detection paper (Note: We also provide pre-trained weights, which you could see at ./trained_models)

<p align="center"> <img src="demo/video.gif"><br/> <i>An example of our model's output.</i> </p>

Datasets

DatasetClasses#Train images#Validation images
COCO201780118k5k

Create a data folder under the repository,

cd {repo_root}
mkdir data

How to use our code

With our code, you can:

Experiments

We trained our model by using 3 NVIDIA GTX 1080Ti. Below is mAP (mean average precision) for COCO val2017 dataset

Average PrecisionIoU=0.50:0.95area= allmaxDets=1000.314
Average PrecisionIoU=0.50area= allmaxDets=1000.461
Average PrecisionIoU=0.75area= allmaxDets=1000.343
Average PrecisionIoU=0.50:0.95area= smallmaxDets=1000.093
Average PrecisionIoU=0.50:0.95area= mediummaxDets=1000.358
Average PrecisionIoU=0.50:0.95area= largemaxDets=1000.517
Average RecallIoU=0.50:0.95area= allmaxDets=10.268
Average RecallIoU=0.50:0.95area= allmaxDets=100.382
Average RecallIoU=0.50:0.95area= allmaxDets=1000.403
Average RecallIoU=0.50:0.95area= smallmaxDets=1000.117
Average RecallIoU=0.50:0.95area= mediummaxDets=1000.486
Average RecallIoU=0.50:0.95area= largemaxDets=1000.625

Results

Some predictions are shown below:

<img src="demo/1.jpg" width="280"> <img src="demo/2.jpg" width="280"> <img src="demo/3.jpg" width="280">

<img src="demo/4.jpg" width="280"> <img src="demo/5.jpg" width="280"> <img src="demo/6.jpg" width="280">

<img src="demo/7.jpg" width="280"> <img src="demo/8.jpg" width="280"> <img src="demo/9.jpg" width="280">

Requirements

References

Citation

@article{EfficientDetSignatrix,
    Author = {Signatrix GmbH},
    Title = {A Pytorch Implementation of EfficientDet Object Detection},
    Journal = {https://github.com/signatrix/efficientdet},
    Year = {2020}
}