Awesome
LANP-UVAD
Official implementation of "Learning Anomalies with Normality Prior for Unsupervised Video Anomaly Detection, ECCV-2024".
1. Dependencies
python==3.7
pytorch==1.9.0
scikit-learn==0.24.2
scipy==1.7.3
tqdm==4.65.0
Platform: NVIDIA GeForce RTX 2080 Ti
2. Usage
Setup
-
Please download the extracted features for ShanghaiTech and UCF-Crime dataset from links: ShanghaiTech features, UCF-Crime features. The above features use the RexNext-101 to extract from this repo
-
Please download ShanghaiTech dataset from this repo and put the
testing
folder todata/shanghaitech/
- Change the file paths to the download datasets above in
config/config_sh.yaml
andconfig/config_ucf.yaml
Train and test the LANP-UVAD
After the setup, simply run the following commands:
python main.py --load_config config/config_sh.yaml
python main.py --load_config config/config_ucf.yaml
Citation
If you find this repo useful for your research, please consider citing our paper:
@inproceedings{park2020learning,
title={Learning Anomalies with Normality Prior for Unsupervised Video Anomaly Detection},
author={Shi, Haoyue and Wang, Le and Zhou, Sanping and Hua, Gang and Tang, Wei},
booktitle={European Conference on Computer Vision},
year={2024}
}