Awesome
DocPrompting: Generating Code by Retrieving the Docs
This is the official implementation of
Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo Wang, Zhengbao Jiang, Graham Neubig, "DocPrompting: Generating Code by Retrieving the Docs", ICLR'2023 (Spotlight)
January 2023 - The paper was accepted to ICLR'2023 as a Spotlight!
Publicly available source-code libraries are continuously growing and changing. This makes it impossible for models of code to keep current with all available APIs by simply training these models on existing code repositories. We introduce DocPrompting: a natural-language-to-code generation approach that explicitly leverages documentation by
- retrieving the relevant documentation pieces given an NL intent, and
- generating code based on the NL intent and the retrieved documentation.
In this repository we provide the best model in each setting described in the paper.
Table of content
- Quick Dataset&Eval Access through 🤗
- Quick Models Loading 🤗
- Preparation
- Retrieval
- Generation
- Data
- Resources
- Citation
Huggingface 🤗 Dataset & Evaluation
In this work, we introduce a new natural language to bash generation benchmark tldr
and re-split CoNaLa
to have unseen functions on the dev and test set.
The datasets and the corresponding evaluations are available on huggingface
import datasets
import evaluate
tldr = datasets.load_dataset('neulab/tldr')
tldr_metric = evaluate.load('neulab/tldr_eval')
conala = datasets.load_dataset('neulab/docprompting-conala')
conala_metric = evaluate.load('neulab/python_bleu')
Huggingface 🤗 Models
We make the following models available on Huggingface:
- neulab/docprompting-tldr-gpt-neo-125M
- neulab/docprompting-tldr-gpt-neo-1.3B
Example usage
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("neulab/docprompting-tldr-gpt-neo-1.3B")
model = AutoModelForCausalLM.from_pretrained("neulab/docprompting-tldr-gpt-neo-1.3B")
# prompt template
prompt = f"""{tokenizer.bos_token} Potential manual 0: makepkg - package build utility
Potential manual 1: -c, --clean Clean up leftover work files and directories after a successful build.
Potential manual 2: -r, --rmdeps Upon successful build, remove any dependencies installed by makepkg during dependency auto-resolution and installation when using -s
Potential manual 3: CONTENT_OF_THE_MANUAL_3
...
Potential manual 10: CONTENT_OF_THE_MANUAL_10"""
prompt += f"{tokenizer.sep_token} clean up work directories after a successful build {tokenizer.sep_token}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
gen_tokens = model.generate(
input_ids,
num_beams=5,
max_new_tokens=150,
num_return_sequences=2,
pad_token_id=tokenizer.eos_token_id
)
gen_tokens = gen_tokens.reshape(1, -1, gen_tokens.shape[-1])[0][0]
# to text and clean
gen_code = tokenizer.decode(gen_tokens)
gen_code = gen_code.split(tokenizer.sep_token)[2].strip().split(tokenizer.eos_token)[0].strip()
print(gen_code)
>>> makepkg --clean {{path/to/directory}}
Example script
An example script on tldr by using the retrieved docs is here
Other models
Other models require the customized implementations in our repo, please read through the corresponding sections to use them. These models are:
- sparse retriever based on BM25 for
tldr
- dense retriever based on CodeT5 for
CoNaLa
- FiD T5 generator for
tldr
- FiD CodeT5 generator for
CoNaLa
The following instructions are for reproducing the results in the paper.
Preparation
Download data for CoNaLa
and tldr
from link
# unzip
unzip docprompting_data.zip
# move to the data folder
mv docprompting_data/* data
Download trained generator weights from link
unzip docprompting_generator_models.zip
# move to the model folder
mv docprompting_generator_models/* models/generator
Retrieval
Dense retrieval
(CoNaLa
as an example)
The code is based on SimCSE
- Run inference with our trained model on CoNaLa (Python)
python retriever/simcse/run_inference.py \
--model_name "neulab/docprompting-codet5-python-doc-retriever" \
--source_file data/conala/conala_nl.txt \
--target_file data/conala/python_manual_firstpara.tok.txt \
--source_embed_save_file data/conala/.tmp/src_embedding \
--target_embed_save_file data/conala/.tmp/tgt_embedding \
--sim_func cls_distance.cosine \
--num_layers 12 \
--save_file data/conala/retrieval_results.json
We observed that model whether or not to normalize the embeddings can affect the retrieval results.
We therefore selected this hyper-parameter (--normalize_embed
) on the validation set.
The results will be saved to data/conala/retrieval_results.json
.
- Train your own retriever
python retriever/simcse/run_train.py \
--num_layers 12 \
--model_name_or_path Salesforce/codet5-base \
--sim_func cls_distance.cosine \
--temp 0.05 \
--train_file data/conala/train_retriever_sup_unsup.json \
--eval_file data/conala/dev_retriever.json \
--output_dir models/retriever/docprompting_codet5_python_doc_retriever \
--eval_src_file data/conala/conala_nl.txt \
--eval_tgt_file data/conala/python_manual_firstpara.tok.txt \
--eval_root_folder data/conala \
--eval_oracle_file data/conala/cmd_dev.oracle_man.full.json \
--run_name docprompting_codet5_python_doc_retriever \
--num_train_epochs 10 \
--per_device_train_batch_size 512 \
--learning_rate 1e-5 \
--max_seq_length 32 \
--evaluation_strategy steps \
--metric_for_best_model recall@10 \
--load_best_model_at_end \
--eval_steps 125 \
--overwrite_output_dir \
--do_train \
--eval_form retrieval
"$@"
train_retriever_sup_unsup.json
contains the supervised (CoNaLa
training and mined) and unsupervised data (duplication of sentences in a doc) for training the retriever.- Be accurate on the saved model name. If using codet5, make sure
codet5
is in the name.
Sparse retrieval
(tldr
as an example)
There are two stages in the retrieval procedure in tldr
.
The first stage retrieves the bash command and the second stage retrieves the potentially relevant paragraphs that describe the usage of the arguments
- build index with Elasticsearch
python retriever/bm25/main.py \
--retrieval_stage 0
- first stage retrieval
python retriever/bm25/main.py \
--retrieval_stage 1 \
--split {cmd_train, cmd_dev, cmd_test}
- second stage retrieval
python retriever/bm25/main.py \
--retrieval_stage 2 \
--split {cmd_train, cmd_dev, cmd_test}
Generation
FID generation
The code is based on FiD A training or evaluation file should be converted to the format compatible with FiD. An example is here
Important note: FiD has a strong dependency on the version of
transformers
(3.0.2). Unable to match the version might result in inreproducible results.
- Run generation. Here is an example with our trained model on Python CoNaLa
ds='conala'
python generator/fid/test_reader_simple.py \
--model_path models/generator/${ds}.fid.codet5.top10/checkpoint/best_dev \
--tokenizer_name models/generator/codet5-base \
--eval_data data/${ds}/fid.cmd_test.codet5.t10.json \
--per_gpu_batch_size 8 \
--n_context 10 \
--name ${ds}.fid.codet5.top10 \
--checkpoint_dir models/generator \
--result_tag test_same \
--main_port 81692
The results will be saved to models/generator/{name}/test_results_test_same.json
To evaluate pass@k
, we need more generations, we use nucleus sampling (instead of beam search) for the generation.
ds='conala'
t=1.0 # set this from 0.2, 0.4, 0.6, .. 1.0. Use the dev set to find the best temperature
python generator/fid/test_reader_simple.py \
--model_path models/generator/${ds}.fid.codet5.top10/checkpoint/best_dev \
--tokenizer_name models/generator/codet5-base \
--eval_data data/${ds}/fid.cmd_test.codet5.t10.ns200.json \
--per_gpu_batch_size 8 \
--n_context 10 \
--name ${ds}.fid.codet5.top10.ns200 \
--checkpoint_dir models/generator \
--result_tag test_same \
--num_beams 1 \
--temperature $t \
--top_p 0.95 \
--num_return_sequences 200 \
--main_port 81692
Then run this script
python dataset_helper/conala/execution_eval.py --result_file data/${ds}/fid.cmd_test.codet5.t10.ns200.json
- Train your own generator
ds='conala'
python generator/fid/train_reader.py \
--seed 1996 \
--train_data data/${ds}/fid.cmd_train.codet5.t10.json \
--eval_data data/${ds}/fid.cmd_dev.codet5.t10.json \
--model_name models/generator/codet5-base \ # initialize with the codet5-base model \
--per_gpu_batch_size 4 \
--n_context 10 \
--name ${ds}.fid.codet5.top10 \
--checkpoint_dir models/generator/ \
--eval_freq 500 \
--accumulation_steps 2 \
--main_port 30843 \
--total_steps 20000 \
--warmup_steps 2000
ds='tldr'
python generator/fid/train_reader.py \
--dataset tldr \
--train_data data/${ds}/fid.cmd_train.codet5.t10.json \
--eval_data data/${ds}/fid.cmd_model_select.codet5.t10.json \
--model_name models/generator/codet5-base \
--per_gpu_batch_size 4 \
--n_context 10 \
--eval_metric token_f1 \
--name ${ds}.fid.codet5.top10 \
--checkpoint_dir models/generator/ \
--eval_freq 1000 \
--accumulation_steps 2 \
--main_port 32420 \
--total_steps 20000 \
--warmup_steps 2000
- Examples in
fid.cmd_model_select.codet5.t10.json
are the same asfid.cmd_dev.codet5.t10.json
. The difference is that it use the oracle first stage retrieval results (oracle bash name).
Data
The data
folder contains the two benchmarks we curated or re-splitted.
- tldr
- CoNaLa
On each dataset, we provide
- Natural language intent (entry
nl
) - Oracle code (entry
cmd
)
- Bash for tldr
- Python for CoNaLa
- Oracle docs (entry
oracle_man
)
- In the data files, we only provide the manual ids, their contents could be found in the
{dataset}/{dataset}_docs.json
.
- Other data with different format for different modules
Resources
Citation
@inproceedings{zhou23docprompting,
title = {DocPrompting: Generating Code by Retrieving the Docs},
author = {Shuyan Zhou and Uri Alon and Frank F. Xu and Zhiruo Wang and Zhengbao Jiang and Graham Neubig},
booktitle = {International Conference on Learning Representations (ICLR)},
address = {Kigali, Rwanda},
month = {May},
url = {https://arxiv.org/abs/2207.05987},
year = {2023}
}