Awesome
ACDRNet
Official PyTorch implementation of "End to End Trainable Active Contours via Differentiable Rendering" (link)
Prerequisites
- python 3.6
- pytorch 1.1
- torchvision
- neural_renderer
- numpy
- scipy
- scikit-learn
- OpenCV
- tqdm
- h5py
- imageio
- pycocotools
- tensorboard
Data preparation
Buildings
The data folder should have the following format:
images/
AAA.xxx
BBB.xxx
masks/
AAA.xxx
BBB.xxx
Download links:
Cityscapes
Convert Cityscapes images to HDF5 for fast crop inference:
python data/make_hdf5.py [--images-path] [--outdir]
Generate Cityscapes instances .json files:
python data/generate_cityscapes_instances.py [--outdir] [--outfile] [--min-area]
Make sure you use the same path in both files for --outdir
. The data folder should have the following format:
cityscapes_instances/
train/
all_classes_instances.json
train_val/
all_classes_instances.json
val/
all_classes_instances.json
all_images.hdf5
Download links:
Train and Evaluate
Use the train.py
for training. You can set the "validation" dataset to the "test" dataset
for easy evaluation every --eval-rate
epochs.
Training options:
# Training
--epochs Number of epochs
--start-epoch Starting epoch
--batch-size Batch size
--lr Learning rate
--lr-step LR scheduler step
# Architecture
--arch Network architecture. "unet" or "resnet"
--image-size Neural Renderer output size
--dec-size Spatial size of the decoder. Only relevant for ResNet
--enc-dim Encoder dim(channels). Only relevant for UNet
--dec-dim Decoder dim(channels)
--stages ResNet skip connections
--drop Dropout rate
# Active contour
--num-nodes Number of nodes
--iter AC number of iterations
--lmd-balloon Balloon
--lmd-curve Curvature
--lmd-dist Distance
# Data
--train-dataset Training dataset
--ann-train Split for training
--ann-val Split tor evaluation
# Cityscapes Data
--inst-path Path to Cityscapes instances directory
--ann-type Type of annotation, full instance or only components.
--class-name Class for Cityscapes dataset
--loops Data repetition in Cityscapes dataset
# Buildings Data
--data-path Path to buildings dataset directory
# Misc
--eval-rate Evaluate after "eval_rate" epochs
--save-rate Save rate is "save_rate" * "eval_rate"
--checkname Checkname
--resume Resume file path
Cityscapes example:
python train.py --arch resnet --class-name train [--inst-path] --ann-type full --train-dataset cityscapes
Tunning
- Add nodes by
--num-node
- Sometimes fine-tunning with more AC iteration can yield better results, use
--iter
to set the number of iterations - Train first on components
--ann-type comp
(Cityscapes) - In the data transformations switch between:
transforms.RandomResizedCrop((args.image_size, args.image_size), scale=(0.2, 2)),
andtransforms.RandomAffine(22, scale=(0.75, 1.25))
transforms.Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])
andtransforms.NormalizeInstance()