Home

Awesome

updating....

IncepFormer: Efficient Inception Transformer with Spatial Selection Decoder for Semantic Segmentation

<!-- ![image](resources/image.png) --> <div align="center"> <img src="./images/IncepFormer.png"> </div> <p align="center"> </p> <!-- ### [Project page](https://github.com/shendu0321/IncepFormer) | [Paper](http://arxiv.org/abs/2212.03035) IncepFormer: Efficient Inception Transformer with Pyramid Pooling for Semantic Segmentation.<br> Lihua Fu, Haoyue Tian, Xiangping Bryce Zhai, Pan Gao, Xiaojiang Peng This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for [IncepFormer](http://arxiv.org/abs/2212.03035). -->

We use MMSegmentation v0.29.0 as the codebase.

Installation

For install and data preparation, please refer to the guidelines in MMSegmentation v0.29.0.

Other requirements: pip install timm==0.4.12

An example (works for me): CUDA 11.0 and pytorch 1.7.0

pip install torchvision==0.8.0
pip install timm==0.4.12
pip install mmcv-full==1.5.3 
pip install opencv-python==4.6.0.66
cd IncepFormer && pip install -e .

Training

Download weights ( google drive ) pretrained on ImageNet-1K, and put them in a folder pretrained/.

Example: train IncepFormer-T on ADE20K:

# Single-gpu training
python tools/train.py local_configs/incepformer/Tiny/tiny_ade_512×512_160k.py

# Multi-gpu training
./tools/dist_train.sh local_configs/incepformer/Tiny/tiny_ade_512×512_160k.py <GPU_NUM>

Evaluation

Example: evaluate IncepFormer-T on ADE20K:

# Single-gpu testing
python tools/test.py local_configs/incepformer/Tiny/tiny_ade_512×512_160k.py /path/to/checkpoint_file

# Multi-gpu testing
./tools/dist_test.sh local_configs/incepformer/Tiny/tiny_ade_512×512_160k.py /path/to/checkpoint_file <GPU_NUM>

# Multi-gpu, multi-scale testing
tools/dist_test.sh local_configs/incepformer/Tiny/tiny_ade_512×512_160k.py /path/to/checkpoint_file <GPU_NUM> --aug-test