Awesome
Hyperspectral Target Detection Based on Interpretable Representation Network (HTD-IRN), IEEE TGRS, 2023.
Files
Main.py
, Model.py
, Train_Test.py
,ts_generation.py
,utils.py
.
Requirement
python 3.6.13
, torch 1.10.1
, NVIDIA Geforce RTX 2080Ti.
Network
HTD-IRN is a promising detector for hyperspectral imagery based on a deep subspace representation network with Uformer.
Run
run Main.py
.
Note
1. Three states of train
, test
, or parameter_selection
can be chosen in Main.py
.
2. We provide a well-trained model of San Diego I, and you can test it directly.
3. For a new dataset, the optimal values of m and eta1 should be chosen first. So you can change the state to parameter_selection
in Main.py
.
Cite
@ARTICLE{shen2023hyperspectral,
author={Shen, Dunbin and Ma, Xiaorui and Kong, Wenfeng and Liu, Jianjun and Wang, Jie and Wang, Hongyu},
journal={IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING},
title={Hyperspectral Target Detection Based on Interpretable Representation Network},
year={2023},
volume={},
number={},
pages={1-17},
doi={10.1109/TGRS.2023.3302950}}