Home

Awesome

IncDE

The codes and datasets for "Towards Continual Knowledge Graph Embedding via Incremental Distillation" [AAAI 2024].

Framework

image-20240417104607874

Folder Structure

The structure of the folder is shown below:

 IncDE
 ├─checkpoint
 ├─data
 ├─logs
 ├─save
 ├─src
 ├─main.py
 ├─data_preprocess.py
 └README.md

Introduction to the structure of the folder:

Requirements

All experiments are implemented on the NVIDIA RTX 3090Ti GPU with the PyTorch. The version of Python is 3.7.

Please run as follows to install all the dependencies:

pip3 install -r requirements.txt

Usage

Preparation

  1. Unzip the dataset $data1.zip$ and $data2.zip$ in the folder of $data$.
  2. Prepare the data processing in the shell:
python data_preprocess.py

Main Results

  1. Run the code with this in the shell:
python main.py -dataset ENTITY -gpu 0

Ablation Results

  1. Run the code with this in the shell:
./ablation.sh

Citation

If you find this method or code useful, please cite

@inproceedings{liu2024towards,
  title={Towards Continual Knowledge Graph Embedding via Incremental Distillation},
  author={Liu, Jiajun and Ke, Wenjun and Wang, Peng and Shang, Ziyu and Gao, Jinhua and Li, Guozheng and Ji, Ke and Liu, Yanhe},
  booktitle={AAAI},
  year={2024}
}