Awesome
Onion-Peel Networks for Deep Video Completion
Seoung Wug Oh, Sungho Lee, Joon-Young Lee, Seon Joo Kim
ICCV 2019
- This repository contains a demo software for OPN with following applications
- Reference guided image completion (group photo inpainting)
- Video completion
- Requirements
- python 3.6
- pytorch 0.4.0
- opencv, pillow
- How to Use
Environment setup
conda create --name opn python=3.6
source activate opn
pip install opencv-contrib-python pillow
conda install pytorch=0.4.0 cuda90 -c pytorch
conda install torchvision
Download weights
Place it the same folder with demo scripts
wget -O OPN.pth "https://www.dropbox.com/s/sxo25p12sfc7na7/OPN.pth?dl=1"
wget -O TCN.pth "https://www.dropbox.com/s/nihciqj551xv7a8/TCN.pth?dl=1"
Run
1) Group photo inpainting
python demo_group_image.py --input 3e91f10205_2
2) Video inpainting
python demo_video.py --input parkour
Test your own images/videos
Prepare your images/videos in Image_inputs/[name]
or Video_inputs/[name]
, in the same format and naming rule with the provided examples.
then, run
python demo_group_image.py --input [name]
or,
python demo_video.py --input [name]
- Reference
If you find our paper and repo useful, please cite our paper. Thanks!
Onion-Peel Networks for Deep Video Completion
Seoung Wug Oh, Sungho Lee, Joon-Young Lee, Seon Joo Kim
ICCV 2019
- Related Project
Please check out our another approach for video inpaining!
Copy-and-Paste Networks for Deep Video Inpainting
Sungho Lee, Seoung Wug Oh, DaeYeun Won, Seon Joo Kim
ICCV 2019
- Datasets
This repository partially contains frames sampled from Youtube-VOS videos for the group photo application, and DAVIS videos and masks from Huang et al. for the video inpainting.
- Terms of Use
This software is for non-commercial use only. The source code is released under the Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) Licence (see this for details)