Awesome
GOL
[NeurIPS 2022] Geometric order learning for rank estimation [paper]
Seon-Ho Lee, Nyeong-Ho Shin, and Chang-Su Kim
Dependencies
- Python 3.8
- Pytorch 1.7.1
Datasets
- For MORPH II experiments, we follow the same fold settings in this OL repo.
- For Adience experiments, we follow the official splits.
- [CACD]
- [UTK]
Usage
$ python train.py
- Modify 'cfg.dataset' and 'cfg.setting' for training on other/custom dataset
- You may need to change 'cfg.ref_point_num' and 'cfg.margin' to obtain decent results.
Citation
Please cite our paper if you use this repository.
@inproceedings{GOL2022lee,
author = {LEE, Seon-Ho and Shin, Nyeong-Ho and Kim, Chang-Su},
title = {Geometric Order Learning for Rank Estimation},
booktitle = {Advances in Neural Information Processing Systems},
year = {2022}
}
License
MIT License