Awesome
Secure Socket Funneling
Secure Socket Funneling (SSF) is a network tool and toolkit.
It provides simple and efficient ways to forward data from multiple sockets (TCP or UDP) through a single secure TLS tunnel to a remote computer.
SSF is cross platform (Windows, Linux, OSX) and comes as standalone executables.
Features:
- Local and remote TCP port forwarding
- Local and remote UDP port forwarding
- Local and remote SOCKS server
- Local and remote shell through sockets
- File copy
- Native relay protocol
- TLS connection with the strongest cipher-suites
Cross compiling SSF (e.g. Raspberry Pi)
How to use
Command line
Client
Usage: ssf[.exe] [options] server_address
Options:
-
-v verbose_level
: Verbosity: critical|error|warning|info|debug|trace (default: info) -
-q
: Quiet mode. Do not print logs -
-p port
: Remote port (default: 8011) -
-c config_file_path
: Specify configuration file. If not set, 'config.json' is loaded from the current working directory -
-m attempts
: Max unsuccessful connection attempts before stopping (default: 1) -
-t delay
: Time to wait before attempting to reconnect in seconds (default: 60) -
-n
: Do not try to reconnect client if connection is interrupted -
-g
: Allow gateway ports. Allow client to bind local sockets for a service to a specific address rather than "localhost" -
-S
: Display microservices status (on/off)
Services options:
-
-D [[bind_address]:]port
: Run a SOCKS proxy on the server accessible on[[bind_address]:]port
on the local side -
-F [[bind_address]:]port
: Run a SOCKS proxy on the local host accessible from the server on[[bind_address]:]port
-
-X [[bind_address]:]port
: Forward server shell I/O to the specified port on the local side. Each connection creates a new shell process -
-Y [[bind_address]:]port
: Forward local shell I/O to the specified port on the server -
-L [[bind_address]:]port:host:hostport
: Forward TCP connections to[[bind_address]:]port
on the local host tohost:hostport
on the server -
-R [[bind_address]:]port:host:hostport
: Forward TCP connections to[[bind_address]:]port
on the server tohost:hostport
on the local side -
-U [[bind_address]:]port:host:hostport
: Forward local UDP traffic on[[bind_address]:]port
tohost:hostport
on the server -
-V [[bind_address]:]port:host:hostport
: Forward UDP traffic on[[bind_address]:]port
on the server tohost:hostport
on the local side
Server
Usage: ssfd[.exe] [options]
Options:
-
-v verbose_level
: Verbosity: critical|error|warning|info|debug|trace (default: info) -
-q
: Quiet mode. Do not print logs -
-c config_file_path
: Specify configuration file. If not set, 'config.json' is loaded from the current working directory -
-p port
: Local port (default: 8011) -
-R
: The server will only relay connections -
-l host
: Set server bind address -
-g
: Allow gateway ports. Allow client to bind local sockets for a service to a specific address rather than "localhost" -
-S
: Display microservices status (on/off)
Copy
The copy feature must be enabled on both client and server configuration file:
{
"ssf": {
"services": {
"copy": { "enable": true }
}
}
}
Usage: ssfcp[.exe] [options] [host@]/absolute/path/file [[host@]/absolute/path/file]
Options:
-
-v verbose_level
: Verbosity: critical|error|warning|info|debug|trace (default: info) -
-q
: Quiet mode. Do not print logs -
-c config_file_path
: Specify configuration file. If not set, 'config.json' is loaded from the current working directory -
-p port
: Remote port (default: 8011) -
-t
: Use stdin as input -
--resume
: Attempt to resume file transfer if the destination file exists -
--check-integrity
: Check file integrity at the end of the transfer -
-r
: Copy files recursively -
--max-transfers arg
: Max transfers in parallel (default: 1)
Examples
Client
The client will run a SOCKS proxy on port 9000 and transfer connection requests to the server 192.168.0.1:8000
ssf -D 9000 -c config.json -p 8000 192.168.0.1
Server
The server will be bound to port 8011 on all the network interfaces
ssfd
The server will be bound to 192.168.0.1:9000
ssfd -p 9000 -l 192.168.0.1
Copy local file to remote filesystem
ssfcp [-c config_file] [-p port] path/to/file host@absolute/path/directory_destination
ssfcp [-c config_file] [-p port] path/to/file* host@absolute/path/directory_destination
ssfcp [-c config_file] [-p port] -r path/to/dir host@absolute/path/directory_destination
Pipe file from standard input to remote filesystem
data_in_stdin | ssfcp [-c config_file] [-p port] -t host@path/to/destination/file_destination
Copy remote files to local filesystem :
ssfcp [-c config_file] [-p port] remote_host@path/to/file absolute/path/directory_destination
ssfcp [-c config_file] [-p port] remote_host@path/to/file* absolute/path/directory_destination
ssfcp [-c config_file] [-p port] -r remote_host@path/to/dir absolute/path/directory_destination
Configuration file
{
"ssf": {
"arguments": "",
"circuit": [],
"http_proxy": {
"host": "",
"port": "",
"user_agent": "",
"credentials": {
"username": "",
"password": "",
"domain": "",
"reuse_ntlm": true,
"reuse_nego": true
}
},
"socks_proxy": {
"version": 5,
"host": "",
"port": "1080"
},
"tls" : {
"ca_cert_path": "./certs/trusted/ca.crt",
"cert_path": "./certs/certificate.crt",
"key_path": "./certs/private.key",
"key_password": "",
"dh_path": "./certs/dh4096.pem",
"cipher_alg": "DHE-RSA-AES256-GCM-SHA384"
},
"services": {
"datagram_forwarder": { "enable": true },
"datagram_listener": {
"enable": true,
"gateway_ports": false
},
"stream_forwarder": { "enable": true },
"stream_listener": {
"enable": true,
"gateway_ports": false
},
"copy": { "enable": false },
"shell": {
"enable": false,
"path": "/bin/bash|C:\\windows\\system32\\cmd.exe",
"args": ""
},
"socks": { "enable": true }
}
}
}
Arguments
Configuration key | Description |
---|---|
arguments | use configuration arguments instead of given CLI arguments (except -c ) |
The arguments
key lets the user customize the command line arguments in the configuration file.
This feature is a convenient way to save different client connection profiles.
Given the following configuration file conf.json
:
{
"ssf": {
"arguments": "10.0.0.1 -p 443 -D 9000 -L 11000:localhost:12000 -v debug"
}
}
SSF will extract the given arguments and use them as a replacement of the initial arguments (except -c
).
For example, ssf -c conf.json
will be equivalent to ssf 10.0.0.1 -p 443 -D 9000 -L 11000:localhost:12000 -v debug
:
- connect to
10.0.0.1:443
(10.0.0.1 -p 443
) - start the SOCKS service (
-D 9000
) - start the TCP port forwarding service (
-L 11000:localhost:12000
) - set verbosity level to debug (
-v debug
)
Circuit
Configuration key | Description |
---|---|
circuit | relay chain servers used to establish the connection to the remote server |
The circuit is a JSON array containing the bounce servers and ports which will be used to establish the connection. They are listed as follow:
{
"ssf": {
"circuit": [
{"host": "SERVER1", "port":"PORT1"},
{"host": "SERVER2", "port":"PORT2"},
{"host": "SERVER3", "port":"PORT3"}
]
}
}
This configuration will create the following connection chain:
CLIENT -> SERVER1:PORT1 -> SERVER2:PORT2 -> SERVER3:PORT3 -> TARGET
Proxy
SSF supports connection through:
- HTTP proxy by using the
CONNECT
HTTP method - SOCKS proxy (v4 or v5)
HTTP proxy
Configuration key | Description |
---|---|
http_proxy.host | HTTP proxy host |
http_proxy.port | HTTP proxy port |
http_proxy.user_agent | User-Agent header value in HTTP CONNECT request |
http_proxy.credentials.username | proxy username credentials (all platform: Basic or Digest, Windows: NTLM and Negotiate if reuse = false) |
http_proxy.credentials.password | proxy password credentials (all platform: Basic or Digest, Windows: NTLM and Negotiate if reuse = false) |
http_proxy.credentials.domain | user domain (NTLM and Negotiate auth on Windows only) |
http_proxy.credentials.reuse_ntlm | reuse current computer user credentials to authenticate with proxy NTLM auth (SSO) |
http_proxy.credentials.reuse_kerb | reuse current computer user credentials (Kerberos ticket) to authenticate with proxy Negotiate auth (SSO) |
Supported authentication schemes:
- Basic
- Digest
- NTLM (Windows only)
- Negotiate with Kerberos (reuse computer user credentials)
SOCKS proxy
Configuration key | Description |
---|---|
socks_proxy.version | SOCKS version (4 or 5) |
socks_proxy.host | SOCKS proxy host |
socks_proxy.port | SOCKS proxy port |
No authentication scheme supported.
TLS
Using external files
Configuration key | Description |
---|---|
tls.ca_cert_path | relative or absolute filepath to the CA certificate file |
tls.cert_path | relative or absolute filepath to the instance certificate file |
tls.key_path | relative or absolute filepath to the private key file |
tls.key_password | key password |
tls.dh_path | relative or absolute filepath to the Diffie-Hellman file (server only) |
tls.cipher_alg | cipher algorithm |
With default options, the following files and folders should be in the working directory of the client or the server:
./certs/dh4096.pem
./certs/certificate.crt
./certs/private.key
./certs/trusted/ca.crt
Where:
- dh4096.pem contains the Diffie-Hellman parameters (generate DH parameters)
- certificate.crt and private.key are the certificate and the private key of the SSF server or client (generate certificate)
- ca.crt is the concatenated list of certificates trusted by the SSF server or client (generate CA)
If you want those files at different paths, it is possible to customize them thanks to the TLS path keys:
{
"ssf": {
"tls" : {
"ca_cert_path": "./certs/trusted/ca.crt",
"cert_path": "./certs/certificate.crt",
"key_path": "./certs/private.key",
"key_password": "",
"dh_path": "./certs/dh4096.pem",
"cipher_alg": "DHE-RSA-AES256-GCM-SHA384"
}
}
}
Using configuration file only
Configuration key | Description |
---|---|
tls.ca_cert_buffer | CA certificate file content in PEM format (:warning: \n between data and PEM header/footer) |
tls.cert_buffer | instance certificate file content in PEM format (:warning: \n between data and PEM header/footer) |
tls.key_buffer | private key file content in PEM format (:warning: \n between data and PEM header/footer) |
tls.key_password | key password |
tls.dh_buffer | Diffie-Hellman parameters file content in PEM format (:warning: \n between data and PEM header/footer, server only) |
tls.cipher_alg | cipher algorithm |
You can integrate the TLS parameters directly into the configuration file by using the tls.ca_cert_buffer
, tls.cert_buffer
, tls.key_buffer
and tls.dh_buffer
keys.
{
"ssf": {
"tls" : {
"ca_cert_buffer":"-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
"cert_buffer":"-----BEGIN CERTIFICATE-----\n...\n-----END CERTIFICATE-----",
"key_buffer":"-----BEGIN RSA PRIVATE KEY-----\n...\n-----END RSA PRIVATE KEY-----",
"key_password": "",
"dh_buffer":"-----BEGIN DH PARAMETERS-----\n...\n-----END DH PARAMETERS-----",
"cipher_alg": "DHE-RSA-AES256-GCM-SHA384"
}
}
}
Certificates, private keys and DH parameters must be in PEM format. :warning: \n
between data and PEM header/footer are mandatory.
Microservices
Configuration key | Description |
---|---|
services.*.enable | enable/disable microservice |
services.*.gateway_ports | enable/disable gateway ports |
services.shell.path | binary path used for shell creation |
services.shell.args | binary arguments used for shell creation |
SSF's features are built using microservices (TCP forwarding, remote SOCKS, ...)
There are 7 microservices:
- stream_forwarder
- stream_listener
- datagram_forwarder
- datagram_listener
- copy
- socks
- shell
Each feature is the combination of at least one client side microservice and one server side microservice.
This table sums up how each feature is assembled:
ssf feature | microservice client side | microservice server side |
---|---|---|
-L : TCP forwarding | stream_listener | stream_forwarder |
-R : remote TCP forwarding | stream_forwarder | stream_listener |
-U : UDP forwarding | datagram_listener | datagram_forwarder |
-V : remote UDP forwarding | datagram_forwarder | datagram_listener |
-D : SOCKS | stream_listener | socks |
-F : remote SOCKS | socks | stream_listener |
-X : shell | stream_listener | shell |
-Y : remote shell | shell | stream_listener |
This architecture makes it easier to build remote features: they use the same microservices but on the opposite side.
ssf
and ssfd
come with pre-enabled microservices.
Here is the default microservices configuration:
{
"ssf": {
"services": {
"datagram_forwarder": { "enable": true },
"datagram_listener": { "enable": true },
"stream_forwarder": { "enable": true },
"stream_listener": { "enable": true },
"socks": { "enable": true },
"copy": { "enable": false },
"shell": { "enable": false }
}
}
}
To enable or disable a microservice, set the enable
key to true
or false
.
Trying to use a feature requiring a disabled microservice will result in an error message.
How to generate certificates for TLS connections
Manually
Generating Diffie-Hellman parameters
openssl dhparam 4096 -outform PEM -out dh4096.pem
Generating a self-signed Certification Authority (CA)
First of all, create a file named extfile.txt containing the following lines:
[ v3_req_p ]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
Then, generate a self-signed certificate (the CA) ca.crt and its private key ca.key:
openssl req -x509 -nodes -newkey rsa:4096 -keyout ca.key -out ca.crt -days 3650
Generating a private key and a certificate (signed with the CA)
Generate a private key private.key and a certificate signing request certificate.csr:
openssl req -newkey rsa:4096 -nodes -keyout private.key -out certificate.csr
Generate the certificate (certificate.pem) by signing the CSR with the CA (ca.crt, ca.key):
openssl x509 -extfile extfile.txt -extensions v3_req_p -req -sha1 -days 3650 -CA ca.crt -CAkey ca.key -CAcreateserial -in certificate.csr -out certificate.pem