Home

Awesome

Hiqlite

Hiqlite is an embeddable SQLite database that can form a Raft cluster to provide strong consistency, high availability (which is where Hiqlite derives from), replication, automatic leader fail-over and self-healing features.

Why

Why another SQLite replication solution? Other projects exist already that can do this. The problem is that none of them checks all boxes. They either require an additional independent process running on the side which can do async replication, need a special file system, or are running as a server.

I don't think that running SQLite as a server is a good solution. Yes, it is very resource friendly, and it may be a good solution when you are heavily resource constrained, but you lose its biggest strength when doing this: having all your data local, which makes reads superfast without network latency.

Hiqlite builds on top of rusqlite and provides an async wrapper around it to make it easy usable with tokio. For the Raft logic, it builds on top ofopenraft while providing its own storage and network implementations.

Goal

Rust is such an efficient language that you usually only need one process to achieve whatever you need, for most applications at least. An embedded SQLite makes the whole process very convenient. You get very fast local reads and at the same time, it comes with the benefit that you don't have to manage an additional database, which you need to set up, configure and more importantly maintain. And embedded SQLite will bring database updates basically for free when you build a new version.

When configured correctly, SQLite offers very good performance and can handle most workloads these days. In very first benchmarks that I did to find out if the project makes sense in the first place, I got up to 24.5k single inserts / s on a cheap consumer grade M2 SSD. These tests were done on localhost with 3 different processes, but still with real networking in between them. On another machine with older SATA SSDs it reached up to 16.5k inserts / s.

At the end, the goal is that you can have the simplicity and all the advantages of an embedded SQLite while still being able to run your application highly available (which is almost always mandatory for me) and having automatic fail-over in case of any errors or problems.

Currently implemented and working features

Performance

I added a bench example for easy testing on different hardware and setups. This example is very simple and it mostly cares about INSERT performance, since this is usually the bottleneck with Raft, because of 2 RTTs for each write by design.

The performance can vary quite a bit, depending on your setup and hardware, of course. Even though the project is in an early state, I already put quite a bit of work in optimizing latency and throughput and I would say, it will be able to handle everything you throw at it. When you reach the threshold, you are probably in an area where you usually would not rely on a single database instance with something like a Postgres anymore as well.
SSDs and fast memory make quite a big difference of course. Regarding the CPU, the whole system is designed to benefit more from fewer cores with higher single core speed like Workstation CPU's or AMD Epyc 4004 series. The reason is the single writer at a time limitation from SQLite.

Just to give you some raw numbers so you can get an idea how fast it currently is, some numbers below.
These values were taken using the bench example.

Hiqlite can run as a single instance as well, which will have lower latency and higher throughput of course, but I did not include this in the tests, because you usually want a HA Raft cluster of course. With higher concurrency (-c), only write / second will change, reads will always be local anyway.

Test command (-c adjusted each time for different concurrency):

cargo run --release -- cluster -c 4 -r 100000

Beefy Workstation

AMD Ryzen 9950X, DDR5-5200 with highly optimized timings, M2 SSD Gen4

SQLite:

Concurrency100k single INSERT100k transactional INSERTsingle row SELECT
4~22.000 / s~680.000 / s~16 micros
16~36.000 / s~450.000 / s
64~43.000 / s~440.000 / s

Cache:

Concurrency100k single PUTsingle entry GET
4~49.000 / s~10 micros
16~150.000 / s
64~320.000 / s

Older Workstation

AMD Ryzen 3900X, DDR4-3000, 2x M2 SSD Gen3 as Raid 0

SQLite:

Concurrency100k single INSERT100k transactional INSERTsingle row SELECT
4~6.800 / s~235.000 / s~28 micros
16~13.300 / s~180.000 / s
64~20.800 / s~173.000 / s

Cache:

Concurrency100k single PUTsingle entry GET
4~17.200 / s~17 micros
16~52.000 / s
64~112.00 / s

Crate Features

default

By default, the following features are enabled:

auto-heal

This feature allows for auto-healing the State Machine (SQLite) in case of an un-graceful shutdown. To reduce I/O and improve performance, Hiqlite does not write the last_applied_log_id from the Raft messages into SQLite with each write. If it would do that, we would need to execute 1 extra query for each incoming request, which effectively would double the amount of I/O if we just think about single EXECUTE queries. Instead of doing that, it tracks the last applied ID in memory and only persists it into the DB in the following situations:

To make sure it would not start up a database where the last ID has not been persisted correctly, Hiqlite creates a lock file at startup (like most other DB's). If this file exists with the next start, it means that the application has been killed (host crashed, kill -9, ...), because otherwise it would remove the lock file after the last_applied_log_id has been persisted correctly.

The auto-heal feature enabled the functionality to recover an un-graceful shutdown automatically by simply deleting the whole existing SQLite and rebuilding it from the latest snapshot + raft logs to always reach a clean state.

If you have special needs, you may not want this. I can't think of a situation where it would make much sense to disable it, but you could do it.

backup

This feature allows the creation of automatic backups for disaster recovery. It pulls in cron as an additional dependency and enabled sqlite and s3 features as well, because it does not make sense without these.

When backup is enabled, you will get the (by default) nightly backup cron job and you can manually trigger backup creation's via the hiqlite::Client. Backups without pushing them to an S3 storage don't make too much sense, because even when a cluster node would lose its whole volume, it would simply be rebuilt from the current raft leader via snapshot + log replication.

Backups will be created locally first on each of the Raft nodes. Afterward, only the leader will encrypt the backup and push it to the configured S3 bucket for disaster recovery.

Auto-restoring from a backup on S3 storage will also be possible with this feature enabled. The likelihood that you need to do this, is pretty low though.

You lose a cluster node

If you lost a cluster node for whatever reason, you don't need a backup. Just shut down the node, get rid of any possibly left over data, and restart it. The node will join the cluster and fetch the latest snapshot + logs from the current leader node.

You lose the full cluster

If you end up in a situation where you lost the complete cluster, it is the only moment when you probably need restore from backup as disaster recovery. The process is simple:

  1. Have the cluster shut down. This is probably the case anyway, if you need to restore from a backup.
  2. Provide a backup file name on S3 storage with the HQL_BACKUP_RESTORE value with prefix s3: (encrypted), or a file on disk (plain sqlite file) with the prefix file:.
  3. Start up the cluster again.
  4. After the restart, make sure to remove the HQL_BACKUP_RESTORE env value.

cache

This feature will start another independent raft group (can run without sqlite enabled as well). The hiqlite::Client will get new functions like get() and put(). The cache feature will build multiple raft-replicated, in-memory caches on all nodes. Basically an in-memory KV store with optional per cache per entry TTL for each key.

dashboard

This feature is the one that makes the crate size on crates.io that big. Hiqlite comes with pre-built, static HTML files to optionally serve a simple dashboard. With this dashboard, you have the possibility to run queries against your database, which typically is not that easy for a SQLite in production, which is probably deployed inside some container.

The dashboard will be served alongside the API HTTP server. It is very basic for now, but it gets the job done. It will pull in quite a few extra dependencies and enable sqlite feature, because it does not work with the cache or other features currently.

dashboard screenshot

dlock

The dlock feature gives you access to distributed locks, synchronized over all Raft nodes. It depends on the cache feature to work.

In some cases, you can't achieve what you need to do within a single query or inside a transaction. For instance, you need to fetch data from the DB, compute stuff with it, and write something back to the DB while the data on the DB must be locked the whole time. Because transactions with Hiqlite can't let you hold a lock directly on the DB (because of the Raft replication), you get distributed locks.

You can lock any key, then do whatever you need, and as soon as the Lock you will get is being dropped, it will be released automatically.

Important: In the current version, a distributed lock is only valid for max 10 seconds, to avoid issues with network segmentation or crashed nodes while they were holding some locks. If a lock is older than 10 seconds, it will be considered being "dead" in the current implementation to get rid of never-ending locks.

full

This feature will simply enable everything apart from the server feature:

listen_notify

Sometimes, you need something simple like Postgres' listen / notify to send real time messages between nodes of your deployment, without the need for message delivery guarantees or something like that. That is exactly what the listen_notify feature will let you do. It pulls in a few additional dependencies and enables the cache feature it depends on.

Depending on your setup, you will get different levels of message delivery guarantees. The classic Postgres listen / notify will forward messages, if another connection is listening, and drop them if not, pretty simple. With Hiqlite, if your node is a real Raft member, meaning it is not using a remote client, you will have a guaranteed once delivery with any form of listen(). If however you have a remote client, which is connected to a remote Hiqlite cluster without a local replicated state, you will not receive missed messages, if you stopped listening for some time. In this case, you will have the classic Postgres behavior.

Important: If you enabled this feature and you notify() via the hiqlite::Client, you must make sure to actually consume the messages on each node. Behind the scenes, Hiqlite uses an unbound channel to never block these. This channel could fill up if you notify() without listen().

s3

You would probably never just enable the s3 feature on its own in the current implementation. It has been outsourced for a possible future feature expansion. It depends on the backup feature and both will pull in each other as a dependency right now. This feature will enable the possibility to push encrypted State Machine (SQLite) backups to a configured s3 bucket.

server

This feature only exists to make it possible to run Hiqlite as a standalone DB / Cluster, if you really want this. It will build a binary which spins up a cluster with the given configuration, or you you can use it to install Hiqlite to spin up instances easily with

cargo install hiqlite --features server

You should never enable the server feature if you are using Hiqlite as a crate and run it inside your application, which should always be preferred, because it would make all operations a lot faster because of local data and less network round-trips. Embedding Hiqlite is actually one of its biggest advantages over a server / client database like Postgres, which would never be able to even come close to the read and SELECT speeds of a local SQLite instance.

shutdown-handle

As mentioned in other places already, a Hiqlite node should always be shut down gracefully to prevent full State Machine rebuilds with each restart. Most applications already have some sort of shutdown handles or can listen automatically. If you already have something like that, you can leave this feature disabled and simply call hiqlite::Client.shutdown() before exiting your main(). In any other case, you can enable the shutdown-handle and register an automatic shutdown handle like shown in the examples, which you can .await just before exiting your main().

sqlite

This is the main feature for Hiqlite, the main reason why it has been created. The sqlite feature will spin up a Raft cluster which uses rocksdb for Raft replication logs and a SQLite instance as the State Machine.

This SQLite database will always be on disk and never in-memory only. Actually, the in-memory SQLite is slower than on-disk with all the applied default optimizations. The reason is that an in-memory SQLite cannot use a WAL file. This makes it slower than on-disk with a WAL file and proper PRAGMA settings in all of my tests. Another issue with an in-memory SQLite is that you will get into problems with queries blocking each other all the time as soon as you have multiple connections for the same reason as above: no WAL file.

This has its own feature though, because you may only be interested in having an in-memory cache / KV store sometimes. In this case, you can disable the default features and only enable cache or whatever you need. You would not even need any volume attached to your container in that case.

webpki-roots

This feature will simply enable baked-in TLS ROOT CA's to be independent of any OS trust store, like for instance when you don't even have one inside your minimal docker container.

Standalone Server / Cluster

Even though it is recommended to embed hiqlite into your application, you can run it standalone as well.

Local Start

The easiest way would be to install the binary with

cargo install hiqlite --features server

and then just execute it:

hiqlite -h

The current implementation is still a bit basic, but it will help you to get it up and running. I suggest to start with generating a template config file with

hiqlite generate-config -h

If you want to just test it without TLS, add the --insecure-cookie option, and you may generate a testing password with -p 123SuperSafe or something like that. Once you have you config, you can start a node with

hiqlite serve -h

The --node-id must match a value from HQL_NODES inside your config. When you overwrite the node id at startup, you can re-use the same config for multiple nodes.

Example Config

Take a look at the examples or the example config to get an idea about the possible config values. The NodeConfig can be created programmatically or fully created from_env() vars.

Cluster inside Kubernetes

There is no Helm chart or anything like that yet, but starting the Hiqlite server inside K8s is very simple.

Namespace

Let's run it inside a new namespace called hiqlite:

kubectl create ns hiqlite

Config

Create a config.yaml which holds your config:

apiVersion: v1
kind: ConfigMap
metadata:
  name: hiqlite-config
  namespace: hiqlite
data:
  config: |
    HQL_NODE_ID_FROM=k8s

    HQL_NODES="
    1 hiqlite-0.hiqlite-headless:8100 hiqlite-0.hiqlite-headless:8200
    2 hiqlite-1.hiqlite-headless:8100 hiqlite-1.hiqlite-headless:8200
    3 hiqlite-2.hiqlite-headless:8100 hiqlite-2.hiqlite-headless:8200
    "

    HQL_LOG_STATEMENTS=false
    HQL_LOGS_UNTIL_SNAPSHOT=10000
    HQL_BACKUP_KEEP_DAYS=3

    HQL_S3_URL=https://s3.example.com
    HQL_S3_BUCKET=test
    HQL_S3_REGION=example
    HQL_S3_PATH_STYLE=true

    HQL_INSECURE_COOKIE=true

Secrets

Create a secrets.yaml. To have an easy time with the ENC_KEYS, since the CLI does not provide a generator yet, you can copy the value from your generate-config step above and re-use the value here, or just re-use the below example values:

apiVersion: v1
kind: Secret
metadata:
  name: hiqlite-secrets
  namespace: hiqlite
type: Opaque
stringData:
  HQL_SECRET_RAFT: 123SuperMegaSafeRandomValue
  HQL_SECRET_API: 123SuperMegaSafeRandomValue

  HQL_S3_KEY: YourS3KeyId
  HQL_S3_SECRET: YourS3Secret

  ENC_KEYS: "
  bVCyTsGaggVy5yqQ/UzluN29DZW41M3hTSkx6Y3NtZmRuQkR2TnJxUTYzcjQ=
  "
  ENC_KEY_ACTIVE: bVCyTsGaggVy5yqQ

  # This is a base64 encoded Argon2ID hash for the password: 123SuperMegaSafe
  HQL_PASSWORD_DASHBOARD: JGFyZ29uMmlkJHY9MTkkbT0xOTQ1Nix0PTIscD0xJGQ2RlJDYTBtaS9OUnkvL1RubmZNa0EkVzJMeTQrc1dxZ0FGd0RyQjBZKy9iWjBQUlZlOTdUMURwQkk5QUoxeW1wRQ==

StatefulSet

The last one for testing (leaving Ingress out for this simple example) will create a StatefulSet, a load balanced Service you could access via a NodePort to reach the dashboard, and a headless Service to the nodes can create direct connections to each other. Create an sts.yaml:

apiVersion: v1
kind: Service
metadata:
  name: hiqlite
  namespace: hiqlite
spec:
  selector:
    app: hiqlite
  type: NodePort
  ports:
    - name: raft
      protocol: TCP
      port: 8100
      targetPort: 8100
    - name: api
      protocol: TCP
      port: 8200
      targetPort: 8200
---
apiVersion: v1
kind: Service
metadata:
  name: hiqlite-headless
  namespace: hiqlite
spec:
  clusterIP: None
  selector:
    app: hiqlite
  ports:
    - name: raft
      protocol: TCP
      port: 8100
      targetPort: 8100
    - name: api
      protocol: TCP
      port: 8200
      targetPort: 8200
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: hiqlite
  namespace: hiqlite
  labels:
    app: hiqlite
spec:
  replicas: 3
  selector:
    matchLabels:
      app: hiqlite
  serviceName: hiqlite-headless
  template:
    metadata:
      labels:
        app: hiqlite
    spec:
      containers:
        - name: hiqlite
          image: ghcr.io/sebadob/hiqlite:0.2.1
          imagePullPolicy: Always
          securityContext:
            allowPrivilegeEscalation: false
          ports:
            - containerPort: 8100
            - containerPort: 8200
          env:
            - name: HQL_SECRET_RAFT
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: HQL_SECRET_RAFT
            - name: HQL_SECRET_API
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: HQL_SECRET_API
            - name: HQL_S3_KEY
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: HQL_S3_KEY
            - name: HQL_S3_SECRET
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: HQL_S3_SECRET
            - name: ENC_KEYS
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: ENC_KEYS
            - name: ENC_KEY_ACTIVE
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: ENC_KEY_ACTIVE
            - name: HQL_PASSWORD_DASHBOARD
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: HQL_PASSWORD_DASHBOARD
          volumeMounts:
            - mountPath: /app/config
              subPath: config
              name: hiqlite-config
            - mountPath: /app/data
              name: hiqlite-data
          livenessProbe:
            httpGet:
              scheme: HTTP
              port: 8200
              path: /health
            initialDelaySeconds: 10
            periodSeconds: 30
          resources:
            requests:
              memory: 32Mi
              cpu: 100m
      # add your image pull secrets name here in case you use a private container registry
      #imagePullSecrets:
      #  - name: harbor
      volumes:
        - name: hiqlite-config
          configMap:
            name: hiqlite-config
  volumeClaimTemplates:
    - metadata:
        name: hiqlite-data
      spec:
        accessModes:
          - "ReadWriteOnce"
        resources:
          requests:
            storage: 256Mi
        # In case you want to specify the storage class.
        # You should always(!) prefer local over some replicated abstraction layer.
        # Hiqlite cares about replication itself already.
        #storageClassName: local-path

Apply Files

The last step is to simply kubectl apply -f the config.yaml and secrets.yaml followed by the sts.yaml last. This should bring up a 3 node, standalone Hiqlite cluster.

Cluster Proxy

If you want to connect to a cluster without being able to reach each node via its configured address in HQL_NODES, like in the Kubernetes example cluster above, you can also start a server binary in proxy mode with

hiqlite proxy -h

Let's do a quick example to start a proxy inside K8s to access the above testing cluster from the outside. This example assumes the above ConfigMap and Secrets do exist already. If this is the case, we only need to add a Deployment:

apiVersion: v1
kind: Service
metadata:
  name: hiqlite-proxy
  namespace: hiqlite
spec:
  type: NodePort
  selector:
    app: hiqlite-proxy
  ports:
    - name: api
      protocol: TCP
      port: 8200
      targetPort: 8200
      nodePort: 30820
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: hiqlite-proxy
  namespace: hiqlite
  labels:
    app: hiqlite-proxy
spec:
  replicas: 2
  selector:
    matchLabels:
      app: hiqlite-proxy
  template:
    metadata:
      labels:
        app: hiqlite-proxy
    spec:
      containers:
        - name: hiqlite-proxy
          image: ghcr.io/sebadob/hiqlite:0.2.1
          command: [ "/app/hiqlite", "proxy" ]
          imagePullPolicy: Always
          securityContext:
            allowPrivilegeEscalation: false
          ports:
            - containerPort: 8100
            - containerPort: 8200
          env:
            - name: HQL_SECRET_API
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: HQL_SECRET_API
            - name: ENC_KEYS
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: ENC_KEYS
            - name: ENC_KEY_ACTIVE
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: ENC_KEY_ACTIVE
            - name: HQL_PASSWORD_DASHBOARD
              valueFrom:
                secretKeyRef:
                  name: hiqlite-secrets
                  key: HQL_PASSWORD_DASHBOARD
          volumeMounts:
            - mountPath: /app/config
              subPath: config
              name: hiqlite-config
          livenessProbe:
            httpGet:
              scheme: HTTP
              port: 8200
              path: /ping
            initialDelaySeconds: 10
            periodSeconds: 30
          resources:
            requests:
              memory: 32Mi
              cpu: 100m
      # add your image pull secrets name here in case you use a private container registry
      #imagePullSecrets:
      #  - name: harbor
      volumes:
        - name: hiqlite-config
          configMap:
            name: hiqlite-config

After kubectl apply -f this deployment, you can use a remote Client to connect via this proxy with

hiqlite::Client::remote()

like shown in the bench example.

Known Issues

There are currently some known issues:

  1. Sometimes a node can hang on shutdown. In this case it needs to be killed manually. As mentioned already, I was not able to reproduce this consistently so far. This could be solved by simply adding a timeout to the shutdown handler, but I did not do that on purpose at the current stage. I would rather find the issue and fix it, even if it takes time because of not being easily reproducible than ignoring the issue with a timeout.
  2. When creating synthetic benchmarks for testing write throughput at the absolute max, you will see error logs because of missed Raft heartbeats and leader switches, even though the network and everything else is fine. The reason is simply that the Raft heartbeats in the current implementation come in-order with the Raft data replication. So, if you generate an insane amount of Raft data which takes time to replicate, because you end up being effectively I/O bound by your physical disk, these heartbeats can get lost, because they won't happen in-time. This issue will be resolved with the next major release of openraft, where heartbeats will be sent separately from the main data replication.
  3. In the current version, the logging output is very verbose on the info level. This is on purpose until everything has been stabilized. In future versions, this will be reduced quite a bit.