Home

Awesome

COCO Loss

Update: we have released the network structure for face recognition. And we answer some common questions in Q&A.

Update: we have an updated version of this work, which we call COCO_v2 [arXiv]. The difference from v1 to v2 is that, in a short story, we (a) propose an optimal scale factor imposed on the input feature before COCO loss; (b) experiments are extended to large-scale face recognition datasets beyond PIPA.

The codebase is UPGRADED to COCO_v2. :)

Codebase for Learning Deep Features via Congenerous Cosine Loss for Person Recognition (COCO_v1), [arXiv]. In the paper, we use the newly proposed PIPA dataset for evaluation; it is a large-scale dataset for person recognition.

We provide a sample code for generating distributions of COCO Loss, Softmax Loss and Center Loss as Figure 3 in our paper. Please follow the steps below:

Runing sample code

  1. Compile CaffeMex_v2 with matlab interface

  2. Link (Linux) or copy (Windows) the path CaffeMex_v2/matlab/+caffe to the root directory in this project

  3. Run script_show_minist.m

  4. It takes just few seconds to generate three figures as:

Notice that the distributions are generated based on caffemodels in model/[LOSS_NAME]. You can reproduce the result by using network definition files in model/train_prototxts/.

The proposed COCO loss layer (known as center_projection_layer.cu here) and the normalized layer (here) are two operations related wiht COCO. The gradient derivation in the initial release (v1) on arXiv is wrong; please resort to v2 (latest version): Eqn.(8) in v2 paper corresponds to the implementation around lines here.

Q&A

Here we list some commonly asked questions we received from the public. Thanks for your engagement to make our work matter!

<!-- - *Why do you not release the whole codebase for the person recognition pipeline?* Good quetion the second. There are many side things you need to take care of: pretrain the models, crop patches, alignment, score merging from regions, etc. So we just skip this part. -->

Still having questions?

Feel free to drop us an email sharing your ideas.

Related work

Please refer to the paper for details.

Citation

Please kindly cite our work in your publications if it helps your research:

@article{liu_2017_coco_v2,
  Author = {Liu, Yu and Li, Hongyang and Wang, Xiaogang},
  Title = {Rethinking Feature Discrimination and Polymerization for Large-scale Recognition},
      journal={arXiv preprint arXiv:1710.00870},
      Year = {2017}
}

@article{liu_2017_coco_v1,
  Author = {Liu, Yu and Li, Hongyang and Wang, Xiaogang},
  Title = {Learning Deep Features via Congenerous Cosine Loss for Person Recognition},
  Journal = {arXiv preprint: 1702.06890},
  Year = {2017}
}