Awesome
:snake::battery: SambaMixer: State of Health Prediction of Li-ion Batteries using Mamba State Space Models
Authors: <br> Sascha Kirch, José Ignacio Olalde-Verano , Sergio Martín & Clara Pérez-Molina
[BibTex
]
Oficial code base of our paper: SambaMixer: State of Health Prediction of Li-ion Batteries using Mamba State Space Models.
:bulb: Contribution
- Introducing Mamba state space models to the problem of Li-Ion battery SOH prediction.
- Using an anchor-based resampling scheme to resample time signals to have the same number of samples while serving as a data augmentation method.
- Applying a sample time-based positional encoding scheme to the input sequence to tackle sample jitter, time signals of varying length and recuperation effects of Li-ion batteries.
:question: Never heard of Mamba Selective State Space models?
Here we provide free access to Sascha's series: Towards Mamba State Space Models Images, Videos and Time Series.
- Part 1: Towards Mamba State Space Models for Images, Videos and Time Series
- Part 2: Structured State Space Models Visually Explained
- Part 3: Here Comes Mamba: The Selective State Space Model
- Part 4: Vision Mamba: Like a Vision Transformer but Better
- Part 5: VideoMamba
- Part 6: MAmbaMixer
- Part 7: Mamba-2
And here free access to all his other articles
:fire: News
2024/11/04
: Code is available Now!2024/11/04
: We release our pre-print on arxiv.
:star: Framework
<img src="media/architecture.png" alt="SambaMixer Architecture" width="800%">:medal_military: Results
<table> <tr> <td> <img src="media/soh_prediction_bat6.png" alt="soh_prediction_bat6" width = 100% ></td> <td><img src="media/soh_prediction_bat7.png" alt="soh_prediction_bat7" width = 100%></td> <td><img src="media/soh_prediction_bat47.png" alt="soh_prediction_bat47" width = 100%></td> </tr> </table>Battery | Model | MAE | RMSE | MAPE |
---|---|---|---|---|
#06 | Mazzi et al. (2024) | 2.448 | 3.177 | 1.579 |
SambaMixer (ours) | 1.173 | 2.068 | 1.406 | |
#07 | Mazzi et al. (2024) | 1.861 | 2.252 | 1.114 |
SambaMixer (ours) | 1.197 | 1.285 | 1.498 | |
#47 | Mazzi et al. (2024) | 2.549 | 3.094 | 1.969 |
SambaMixer (ours) | 0.512 | 0.645 | 0.822 |
:hammer_and_wrench: Installation
Step 1: Docker container
first change into ./environment
directory.
Then build an image from the docker file.
Note that you can provide different build-args here. Ones often used are:
--build-arg HTTP_PROXY
,--build-arg USER_ID=$UID
and--build-arg GROUP_ID=<YOUR_GROUPID>
docker build -t samba-mixer -f Dockerfile .
Create a container from the image.
docker container create --gpus all --name samba-mixer --network=host --mount=type=tmpfs,target=/dev/shm -v ~/git/sascha-kirch/samba-mixer:/home/dev_user/samba-mixer -it samba-mixer:latest
Note that
--gpus
might be set to1
to not block all existing GPUs in a shared environment and that the port mapping might be used already, so you must specify another port.
Further note that
--mount=type=tmpfs,target=/dev/shm
is used to mount a larger filesystem to the shared memory/dev/shm
heavily used by pytorch. Docker defaults this memory to have 64MB and even thoughdocker build
has--shm-size
command, it apperently is ignored in some versions of docker. In my case, I end up with 13GB for /dev/shm after I mount the tmpfs.
To start the container in an interactive bash:
docker container start -i samba-mixer
Or you can connect to the container via attaching VS Code to it.
Step 2: Install the samba_mixer package inside the docker
python -m pip install -e .
Step 3: Install the Mamba Package inside the docker
cd ./third_party_packages/mamba
python -m pip install -e .
cd ..
Note: It might happen that the installation crashes with an error message related to:
ImportError: connot import name 'packaging' from ....
. In that case you need to down grade setuptools viapython -m pip install -U setuptools==69.2.*
Step 4: Install the causal-conv-1d Package inside the docker
cd ./third_party_packages/causal-conv1d-1.2.2
python -m pip install -e .
cd ..
:battery: Add NASA dataset to ./datasets
Only needs to be done once during the initial setup of this repo.
Step 1: Download and uzip all files
mkdir datasets
cd ./datasets
wget https://phm-datasets.s3.amazonaws.com/NASA/5.+Battery+Data+Set.zip
unzip "5.+Battery+Data+Set.zip"
mv "5. Battery Data Set"/ nasa_batteries_orig
cd ./nasa_batteries_orig
unzip "1. BatteryAgingARC-FY08Q4.zip" -d "1. BatteryAgingARC-FY08Q4"
unzip "2. BatteryAgingARC_25_26_27_28_P1.zip" -d "2. BatteryAgingARC_25_26_27_28_P1"
unzip "3. BatteryAgingARC_25-44.zip" -d "3. BatteryAgingARC_25-44"
unzip "4. BatteryAgingARC_45_46_47_48.zip" -d "4. BatteryAgingARC_45_46_47_48"
unzip "5. BatteryAgingARC_49_50_51_52.zip" -d "5. BatteryAgingARC_49_50_51_52"
unzip "6. BatteryAgingARC_53_54_55_56.zip" -d "6. BatteryAgingARC_53_54_55_56"
cd ..
rm -rfv **/*.zip
if wgeet fails, retry and add oprion
--no-check-certificate
to the wget comand
Note: in case those unzip commands do not work or you end up with a different file tree you need to endup with the following file tree
|-- samba_mixer
|-- datasets
|-- nasa_bateries_orig
|-- 1. BatteryAgingARC-FY08Q4
|-- 2. BatteryAgingARC_25_26_27_28_P1
|-- 3. BatteryAgingARC_25-44
|-- 4. BatteryAgingARC_45_46_47_48
|-- 5. BatteryAgingARC_49_50_51_52
|-- 6. BatteryAgingARC_53_54_55_56
Step 2: preprocess to obtain dataset as needed by samba
cd ./scripts/utils
# Get unfiltered datasets
python convert_nasa_dataset_discharge.py
# Apply filters and pre processing as determined in the dataset analysis
python convert_nasa_dataset_discharge.py --filter
:swimmer: Train and Eval Model
# Train a model using ./configs/train_config.yaml
python scripts/train.py
# Train a multiple models using ./configs/experiment_train_model_scaling.yaml
python scripts/train.py -m --config-name experiment_train_model_scaling
# Evaluate a model using ./configs/eval_config.yaml
python scripts/eval.py
# Evaluate multiple models using ./configs/eval_config.yaml
python scripts/eval.py -m
# Start all ablation training runs
sh scripts/start_ablations.sh
# Start all experiment training runs
sh scripts/start_experiments.sh
NOTE: Before you can eval the models, make sure to copy the checkpoint paths into the respect eval configs.
:chart_with_upwards_trend: Experiment Logging
We use tensorboard to log experiements. You can either install a Tensorboard plugin within VS code or start the tensorboard via the CLI
tensorboard --logdir <PATH_TO_LOGS>
:warning: Trouble Shooting
Running out of space in the Dev container
Delete Temp Build Files
You can delete the build files of ./third_party_packages/mamba/build
and ./third_party_packages/causal-conv1d-1.2.2/build
since the built so-file is copied into the root of mamba and the build files and temp files are not cleaned automatically by mamba
:black_nib: Citation
If you find our work helpful for your research, please consider citing the following BibTeX entry.
@misc{olalde_kirch_2024_sambamixer,
title={SambaMixer: State of Health Prediction of Li-ion Batteries using Mamba State Space Models},
author={José Ignacio Olalde-Verano and Sascha Kirch and Clara Pérez-Molina and Sergio Martin},
year={2024},
eprint={2411.00233},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2411.00233},
}