Awesome
Official Code for Structured Kernel Estimation for Photon-Limited Deconvolution (CVPR 2023)
<p align="center"> <img src="https://user-images.githubusercontent.com/20774419/226128164-0a98b51b-cfbc-42a9-b32d-8db3ccdedf5c.png" width="800"> </p>Instructions
-
Create a local copy of repository using the following commands
foor@bar:~$ git clone https://github.com/sanghviyashiitb/structured-kernel-cvpr23.git foor@bar:~$ cd structured-kernel-cvpr23 foor@bar:~/structured-kernel-cvpr23$
-
Download the pretrained models, i.e. denoiser, p4ip, and ktn into
model_zoo
from the link here -
To test the network on levin-data, run the file
<p align="center"> <img src="results/demo_grayscale_output.png" width="800"> </p>foor@bar:~/structured-kernel-cvpr23$ python3 demo_grayscale.py
-
To test the network on real-sensor data, run the file
<p align="center"> <img src="results/demo_real_output.png" width="600"> </p>foor@bar:~/structured-kernel-cvpr23$ python3 demo_real.py
For further details on this dataset containing real-sensor noise + motion blur along with ground-truth kernels i.e., Photon Limited Deblurring Dataset (PLDD) refer to this link
Citation
@InProceedings{Sanghvi_2023_CVPR,
author = {Sanghvi, Yash and Mao, Zhiyuan and Chan, Stanley H.},
title = {Structured Kernel Estimation for Photon-Limited Deconvolution},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {9863-9872}
}
Feel free to ask your questions/share your feedback using the Issues feature at the the top of this page.