Awesome
UPDATE:
This repo is no longer maintained. GANomaly implementation has been added to anomalib, the largest public collection of ready-to-use deep learning anomaly detection algorithms and benchmark datasets.
GANomaly
This repository contains PyTorch implementation of the following paper: GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training [1]
1. Table of Contents
2. Installation
- First clone the repository
git clone https://github.com/samet-akcay/ganomaly.git
- Create the virtual environment via conda
conda create -n ganomaly python=3.7
- Activate the virtual environment.
conda activate ganomaly
- Install the dependencies.
conda install -c intel mkl_fft pip install --user --requirement requirements.txt
3. Experiment
To replicate the results in the paper for MNIST and CIFAR10 datasets, run the following commands:
# MNIST
sh experiments/run_mnist.sh
# CIFAR
sh experiments/run_cifar.sh # CIFAR10
4. Training
To list the arguments, run the following command:
python train.py -h
4.1. Training on MNIST
To train the model on MNIST dataset for a given anomaly class, run the following:
python train.py \
--dataset mnist \
--niter <number-of-epochs> \
--abnormal_class <0,1,2,3,4,5,6,7,8,9> \
--display # optional if you want to visualize
4.2. Training on CIFAR10
To train the model on CIFAR10 dataset for a given anomaly class, run the following:
python train.py \
--dataset cifar10 \
--niter <number-of-epochs> \
--abnormal_class \
<plane, car, bird, cat, deer, dog, frog, horse, ship, truck> \
--display # optional if you want to visualize
4.3. Train on Custom Dataset
To train the model on a custom dataset, the dataset should be copied into ./data
directory, and should have the following directory & file structure:
Custom Dataset
├── test
│ ├── 0.normal
│ │ └── normal_tst_img_0.png
│ │ └── normal_tst_img_1.png
│ │ ...
│ │ └── normal_tst_img_n.png
│ ├── 1.abnormal
│ │ └── abnormal_tst_img_0.png
│ │ └── abnormal_tst_img_1.png
│ │ ...
│ │ └── abnormal_tst_img_m.png
├── train
│ ├── 0.normal
│ │ └── normal_tst_img_0.png
│ │ └── normal_tst_img_1.png
│ │ ...
│ │ └── normal_tst_img_t.png
Then model training is the same as training MNIST or CIFAR10 datasets explained above.
python train.py \
--dataset <name-of-the-data> \
--isize <image-size> \
--niter <number-of-epochs> \
--display # optional if you want to visualize
For more training options, run python train.py -h
.
5. Citing GANomaly
If you use this repository or would like to refer the paper, please use the following BibTeX entry
@inproceedings{akcay2018ganomaly,
title={Ganomaly: Semi-supervised anomaly detection via adversarial training},
author={Akcay, Samet and Atapour-Abarghouei, Amir and Breckon, Toby P},
booktitle={Asian Conference on Computer Vision},
pages={622--637},
year={2018},
organization={Springer}
}
6. Reference
[1] Akcay S., Atapour-Abarghouei A., Breckon T.P. (2019) GANomaly: Semi-supervised Anomaly Detection via Adversarial Training. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11363. Springer, Cham