Awesome
hash-set
hash-set is an implementation of the hash-set data structure. It has constant time lookup, insertion and deletion.
All tests are known to run successfully on SBCL, CCL, ECL, ABCL and CLISP.
Basic usage:
- Please install Quicklisp first.
(ql:quickload 'hash-set)
Function reference
Note: *!hash-set!*
means the hash-set is destructively
modified. Functions that are destructive have an 'n' in front of their
name like CL's reverse
and nreverse
. So, the destructive
version of hs-insert
is hs-ninsert
.
make-hash-set : () -> hash-set
Creates a new hash-set.
(let ((hash-set (make-hash-set)))
;; Operations on hash-set
)
list-to-hs : list -> hash-set
Creates a hash-set containing all the elements of a list.
HASH-SET> (list-to-hs (alexandria:iota 10))
#<HASH-SET of count: 10 {1008832EF3}>
hs : &rest elements -> hash-set
Convenience wrapper around list-to-hs
taking &rest
arguments.
HASH-SET> (hs 1 2 3 4 5)
#<HASH-SET of count: 5 {1005343743}>
hs-to-list : hash-set -> list
Creates a list containing all the elements of the hash-set.
HASH-SET> (hs-to-list (list-to-hs (alexandria:iota 10)))
(0 1 2 3 4 5 6 7 8 9)
hs-count : hash-set -> integer
Return the number of elements in the hash-set.
HASH-SET> (hs-count (list-to-hs '(4 5 6 7)))
4
hs-emptyp : hash-set -> bool
Predicate that tests whether the hash-set is empty or not.
HASH-SET> (hs-emptyp (make-hash-set))
T
hs-equal : hash-set hash-set -> bool
Compares two hash-sets for equality.
HASH-SET> (hs-equal (list-to-hs '(7 8 9))
(list-to-hs '(7 8 9)))
T
hs-copy : hash-set -> hash-set
Returns a copy of the hash-set.
HASH-SET> (let ((hash-set (list-to-hs '(1 2 3 4))))
(hs-equal hash-set
(hs-copy hash-set)))
T
hs-memberp : hash-set elt -> bool
Predicate that tests the existence of an element in the hash-set.
HASH-SET-TEST> (let ((hash-set (list-to-hs '(1 2 3 4))))
(hs-memberp hash-set 4))
T
HASH-SET-TEST> (let ((hash-set (list-to-hs '(1 2 3 4))))
(hs-memberp hash-set 8))
NIL
dohashset
Do something with each element of the hash-set.
HASH-SET> (dohashset (elt (list-to-hs (alexandria:iota 10)))
(princ elt))
0123456789
NIL
hs-map : function hash-set -> hash-set
Maps a function over a hash-set and returns a hash-set containing all the mapped values.
HASH-SET> (hs-to-list (hs-map (lambda (x) (* x x))
(list-to-hs (alexandria:iota 10))))
(0 1 4 9 16 25 36 49 64 81)
hs-filter : function hash-set -> hash-set
Filters out elements from a hash-set that test true with function
.
HASH-SET> (hs-to-list (hs-filter #'oddp
(list-to-hs (alexandria:iota 10))))
(1 3 5 7 9)
Insertion/Deletion
hs-insert : hash-set elt -> hash-set
Returns a new hash-set which contains the element elt
in
addition to all the elements of the hash-set given as the argument.
HASH-SET> (hs-to-list (hs-insert (list-to-hs '(4 5 6)) 123))
(4 5 6 123)
hs-ninsert : hash-set elt -> *!hash-set!*
Inserts elt into the hash-set and returns the modified hash-set.
HASH-SET> (let ((hash-set (list-to-hs '(1 2 3 4))))
(hs-ninsert hash-set 1984)
(hs-to-list hash-set))
(1 2 3 4 1984)
hs-remove : hash-set elt -> hash-set
Returns a copy of the hash-set, but with the elt
removed from
it.
HASH-SET> (hs-to-list (hs-remove (list-to-hs '(4 5 6 7)) 5))
(4 6 7)
hs-nremove : hash-set elt -> *!hash-set!*
Removes the element elt
from the hash-set.
hs-remove-if : predicate hash-set -> hash-set
HASH-SET> (hs-to-list (hs-remove-if #'evenp
(list-to-hs (alexandria:iota 10))))
(1 3 5 7 9)
The elements testing true with the predicate are removed from a copy of the hash-set.
hs-nremove-if : predicate hash-set -> *!hash-set!*
The elements testing true with the predicate are removed from the hash-set.
hs-remove-if-not : predicate hash-set -> hash-set
The elements testing false with the predicate are removed from a copy of the hash-set.
hs-nremove-if-not : predicate hash-set -> *!hash-set!*
The elements testing false with the predicate are removed from the hash-set.
hs-first : hash-set -> elt
Returns an arbitrary element of hash-set. This would be the element returned by hs-pop
or hs-npop
hs-pop : hash-set -> elt hash-set
Removes an arbitrary element of hash-set and returns both it and a copy of hash-set with the element removed. Returns nil on an empty set.
HASH-SET> (hs-pop (hs 1 2 3 4 5))
1
#<HASH-SET of count: 4 {104DE04E43}>
HASH-SET> (hs-pop (hs))
NIL
#<HASH-SET of count: 0 {104DE05CD3}>
hs-npop : hash-set -> elt *!hash-set!*
Modifying version of hs-pop
.
Removes an arbitrary element of hash-set and returns both it and hash-set with the
element removed.
Returns nil on an empty set.
HASH-SET> (let ((hs (hs 1 2 3 4 5)))
(hs-npop hs)
(hs-npop hs)
(hs-npop hs))
3
#<HASH-SET of count: 2 {104DF7DDD3}>
HASH-SET> (hs-npop (hs))
NIL
#<HASH-SET of count: 0 {104DE05CD3}>
hs-pop
and hs-npop
are useful for iterating over sets when the size can change
during the loop.
HASH-SET> (loop :with hs = (list-to-hs (alexandria:iota 10))
:while (not (zerop (hs-count hs)))
:for removed = (hs-npop hs)
:when (evenp removed)
:do
(dotimes (i 3)
(hs-ninsert hs (random 20)))
:do
(format t "hs is now: ~a~%" (hs-to-list hs)))
Set operations
hs-any : predicate hash-set -> bool
A function that returns true if any elements of the hash-set test true with the predicate.
HASH-SET> (hs-any #'oddp (list-to-hs '(2 4 6 8 9)))
T
hs-all : predicate hash-set -> bool
A function that returns true if all elements of the hash-set test true with the predicate.
HASH-SET> (hs-all #'evenp (list-to-hs '(2 4 6 8 9)))
NIL
hs-union : hash-set hash-set -> hash-set
Returns a hash-set that is the union of two hash-sets.
HASH-SET> (hs-to-list (hs-union (list-to-hs '(1 2 3))
(list-to-hs '(4 5 6))))
(1 2 3 4 5 6)
hs-nunion : hash-set-a hash-set-b -> *!hash-set-a!*
Returns a modified hash-set-a
with all of hash-set-b
s
elements added to it.
hs-intersection : hash-set hash-set -> hash-set
Returns a hash-set that is the intersection of two hash-sets.
hs-nintersection : hash-set-a hash-set-b -> *!hash-set-a!*
Returns a modified hash-set-a
which contains the elements of the
intersection of hash-set-a
and hash-set-b
.
hs-difference : hash-set-a hash-set-b -> hash-set
Returns a hash-set that is the set-difference of hash-set-a
and hash-set-b
.
HASH-SET> (hs-to-list (hs-intersection (list-to-hs '(1 2 3 4))
(list-to-hs '(3 4 5 6))))
(3 4)
hs-ndifference : hash-set-a hash-set-b -> *!hash-set-a!*
Returns a modified hash-set-a
that contains the elements of the
set-difference of hash-set-a
and hash-set-b
.
hs-symmetric-difference : hash-set-a hash-set-b -> hash-set
Returns a hash-set with the common elements removed.
HASH-SET> (hs-to-list (hs-symmetric-difference (list-to-hs '(1 2 3 4))
(list-to-hs '(3 4 5 6))))
(1 2 5 6)
hs-subsetp : hash-set-a hash-set-b -> bool
Returns t
if hash-set-a
is a subset of hash-set-b
.
HASH-SET> (hs-subsetp (list-to-hs '(1 2)) (list-to-hs '(1 2 3)))
T
hs-proper-subsetp : hash-set-a hash-set-b -> bool
Returns t
if hash-set-a
is a proper-subset of hash-set-b
.
hs-supersetp : hash-set-a hash-set-b -> bool
Returns t
if hash-set-a
is a superset of hash-set-b
.
hs-proper-supersetp : hash-set-a hash-set-b -> bool
Returns t
if hash-set-a
is a proper-superset of hash-set-b
.
hs-powerset : hash-set -> hash-set
Returns the powerset of the hash-set.
HASH-SET> (hs-to-list (hs-powerset (list-to-hs '(1 2 3))))
(NIL (1) (2) (1 2) (3) (1 3) (2 3) (1 2 3))
hs-cartesian-product : hash-set-a hash-set-b -> hash-set
Returns the hash-set containing the elements of the cartesian product
of hash-set-a
and hash-set-b
.
HASH-SET> (hs-to-list (hs-cartesian-product (list-to-hs (alexandria:iota 3 :start 1))
(list-to-hs (alexandria:iota 3 :start 10))))
((1 10) (1 11) (1 12) (2 10) (2 11) (2 12) (3 10) (3 11) (3 12))
For even more usage examples please see test.lisp
.
Running the tests
CL-USER> (ql:quickload 'hash-set-tests)
To load "hash-set-tests":
Load 1 ASDF system:
hash-set-tests
; Loading "hash-set-tests"
[package hash-set]................................
[package hash-set-test].
(HASH-SET-TESTS)
CL-USER> (in-package :hash-set-test)
#<PACKAGE "HASH-SET-TEST">
HASH-SET-TEST> (run!)
Running test suite ALL-TESTS
...
Credits
Engineering guidance taken from Robert Smith's map-set and Takaya Ochiai's cl-intset libraries.
Contributors
Thanks to
The people at #lisp for their help and guidance.