Awesome
CroDoBo
Introduction
- Pytorch Implementation of Burn After Reading: Online Adaptation for Cross-domain Streaming Data
Environment
- Code is developed with cuda 11.4, python 3.8.5
Requirements
- torch 1.8.1
- wilds 1.1.0
- pillow
Dataset Preparation
- VisDA-C </br>
- COVID-DA</br>
- WILDS</br>
- Fashion-MNIST</br>
- DeepFashion</br>
Prepare the randomly perturbated data by
python gen_random_perm.py
Training
python main_crodobo.py --backbone FEATURENETWORK --dataset DATASETOPTION --data_root PATH/TO/YOUR/DATASET
Contact
- Please email
loyo@umd.edu
orcramaiah@salesforce.com
if you have any questions.
Citation
If you find this codebase useful, please cite our paper:
@article{yang2021burn,
title={Burn After Reading: Online Adaptation for Cross-domain Streaming Data},
author={Yang, Luyu and Gao, Mingfei and Chen, Zeyuan and Xu, Ran and Shrivastava, Abhinav and Ramaiah, Chetan},
journal={arXiv preprint arXiv:2112.04345},
year={2021}
}
Acknowledgement
- We referred to SHOT for the implementation.
License
Our code is BSD-3 licensed. See LICENSE.txt for details.