Awesome
Fast Diffusion Model
This is an official PyTorch implementation of Fast Diffusion Model. See the paper here. If you find our FDM helpful or heuristic to your projects, please cite this paper and also star this repository. Thanks!
@misc{wu2023fast,
title={Fast Diffusion Model},
author={Zike Wu and Pan Zhou and Kenji Kawaguchi and Hanwang Zhang},
year={2023},
eprint={2306.06991},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Acknowledgement: This repo is based on the following amazing projects: EDM and DPM-Solver.
Results
Image synthesis performance (FID) under different million training images (Mimg) is as follows.
Dataset | Duration<br>(Mimg) | EDM | EDM-FDM | VP | VP-FDM | VE | VE-FDM |
---|---|---|---|---|---|---|---|
CIFAR10 | 50 | 5.76 | 2.17 | 2.74 | 2.74 | 49.47 | 10.01 |
CIFAR10 | 100 | 1.99 | 1.93 | 2.24 | 2.24 | 4.05 | 3.26 |
CIFAR10 | 150 | 1.92 | 1.83 | 2.19 | 2.13 | 3.27 | 3.00 |
CIFAR10 | 200 | 1.88 | 1.79 | 2.15 | 2.08 | 3.09 | 2.85 |
FFHQ | 50 | 3.21 | 3.27 | 3.07 | 12.49 | 96.49 | 93.72 |
FFHQ | 100 | 2.87 | 2.69 | 2.83 | 2.80 | 94.14 | 88.42 |
FFHQ | 150 | 2.69 | 2.63 | 2.73 | 2.53 | 79.20 | 4.73 |
FFHQ | 200 | 2.65 | 2.59 | 2.69 | 2.43 | 38.97 | 3.04 |
AFHQv2 | 50 | 2.62 | 2.73 | 3.46 | 25.70 | 57.93 | 54.41 |
AFHQv2 | 100 | 2.57 | 2.05 | 2.81 | 2.65 | 57.87 | 52.45 |
AFHQv2 | 150 | 2.44 | 1.96 | 2.72 | 2.47 | 57.69 | 50.53 |
AFHQv2 | 200 | 2.37 | 1.93 | 2.61 | 2.39 | 57.48 | 47.30 |
Image synthesis performance (FID) under different inference cost on AFHQv2 with EDM sampler.
NFE | EDM | EDM-FDM | VP | VP-FDM | VE | VE-FDM |
---|---|---|---|---|---|---|
25 | 2.78 | 2.32 | 2.88 | 2.59 | 61.04 | 48.29 |
49 | 2.39 | 1.93 | 2.64 | 2.41 | 57.59 | 47.49 |
79 | 2.37 | 1.93 | 2.61 | 2.39 | 57.48 | 47.30 |
Image synthesis performance (FID) under different inference cost on AFHQv2 with DPM-Solver++.
NFE | EDM | EDM-FDM | VP | VP-FDM | VE | VE-FDM |
---|---|---|---|---|---|---|
25 | 2.60 | 2.09 | 2.99 | 2.64 | 59.26 | 49.51 |
49 | 2.42 | 1.98 | 2.79 | 2.45 | 59.16 | 48.68 |
79 | 2.39 | 1.95 | 2.78 | 2.42 | 58.91 | 48.66 |
Requirements
All experiments were conducted using PyTorch 1.13.0, CUDA 11.7.1, and CuDNN 8.5.0. We strongly recommend to use the provided Dockerfile to build an image to reproduce our experiments.
Pre-trained models
We provide pre-trained models for our FDMs along with the baseline models on Hugging Face. Download the checkpoints here.
Preparing datasets
CIFAR-10: Download the CIFAR-10 python version and convert to ZIP archive:
python dataset_tool.py --source=downloads/cifar10/cifar-10-python.tar.gz \
--dest=datasets/cifar10-32x32.zip
python fid.py ref --data=datasets/cifar10-32x32.zip --dest=fid-refs/cifar10-32x32.npz
FFHQ: Download the Flickr-Faces-HQ dataset as 1024x1024 images and convert to ZIP archive at 64x64 resolution:
python dataset_tool.py --source=downloads/ffhq/images1024x1024 \
--dest=datasets/ffhq-64x64.zip --resolution=64x64
python fid.py ref --data=datasets/ffhq-64x64.zip --dest=fid-refs/ffhq-64x64.npz
AFHQv2: Download the updated Animal Faces-HQ dataset (afhq-v2-dataset
) and convert to ZIP archive at 64x64 resolution:
python dataset_tool.py --source=downloads/afhqv2 \
--dest=datasets/afhqv2-64x64.zip --resolution=64x64
python fid.py ref --data=datasets/afhqv2-64x64.zip --dest=fid-refs/afhqv2-64x64.npz
Training from scratch
Train FDM for class-conditional CIFAR-10 using 8 GPUs:
# EDM-FDM
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-output \
--data=datasets/cifar10-32x32.zip --cond=1 --arch=ddpmpp \
--precond=fdm_edm --warmup_ite=200
# VP-FDM
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-output \
--data=datasets/cifar10-32x32.zip --cond=1 --arch=ddpmpp --cres=1,2,2,2 \
--precond=fdm_vp --warmup_ite=400
# VE-FDM
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-output \
--data=datasets/cifar10-32x32.zip --cond=1 --arch=ncsnpp --cres=1,2,2,2 \
--precond=fdm_ve --warmup_ite=400
Train FDM for unconditional FFHQ using 8 GPUs:
# EDM-FDM
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-output
--data=datasets/ffhq-64x64.zip --cond=0 --arch=ddpmpp \
--batch=256 --cres=1,2,2,2 --lr=2e-4 --dropout=0.05 --augment=0.15 \
--precond=fdm_edm --warmup_ite=800 --fdm_multipler=1
# VP-FDM
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-output \
--data=datasets/ffhq-64x64.zip --cond=0 --arch=ddpmpp \
--batch=256 --cres=1,2,2,2 --lr=2e-4 --dropout=0.05 --augment=0.15 \
--precond=fdm_vp --warmup_ite=400 --fdm_multipler=1
# VE-FDM
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-output \
--data=datasets/ffhq-64x64.zip --cond=0 --arch=ncsnpp \
--batch=256 --cres=1,2,2,2 --lr=2e-4 --dropout=0.05 --augment=0.15 \
--precond=fdm_ve --warmup_ite=400
Train FDM for unconditional AFHQv2 using 8 GPUs:
# EDM-FDM
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-output
--data=datasets/afhqv2-64x64.zip --cond=0 --arch=ddpmpp \
--batch=256 --cres=1,2,2,2 --lr=2e-4 --dropout=0.25 --augment=0.15 \
--precond=fdm_edm --warmup_ite=400
# VP-FDM
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-output \
--data=datasets/afhqv2-64x64.zip --cond=0 --arch=ddpmpp \
--batch=256 --cres=1,2,2,2 --lr=2e-4 --dropout=0.25 --augment=0.15 \
--precond=fdm_vp --warmup_ite=400
# VE-FDM
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-output \
--data=datasets/afhqv2-64x64.zip --cond=0 --arch=ncsnpp \
--batch=256 --cres=1,2,2,2 --lr=2e-4 --dropout=0.25 --augment=0.15 \
--precond=fdm_ve --warmup_ite=400
Calculating FID
To compute Fréchet inception distance (FID) for a given model and sampler, first generate 50,000 random images and then compare them against the dataset reference statistics using fid.py
, replace $PATH_TO_CHECKPOINT
with the path to the checkpoint:
# Generate 50000 images
torchrun --standalone --nproc_per_node=8 generate.py --outdir=fid \
--seeds=0-49999 --subdirs --network=$PATH_TO_CHECKPOINT
# Calculate FID
torchrun --standalone --nproc_per_node=8 fid.py calc --images=fid \
--ref=fid-refs/cifar10-32x32.npz
Note that the generated images should be evaluated against the same reference dataset that the model was originally trained on. Please ensure to replace the --ref
option with the correct one (e.g., fid-refs/ffhq-64x64.npz
or fid-refs/afhqv2-64x64.npz
) to obtain the right FID score. Addtionally, you can use --solver=dpm
option to generate images with DPM-Solver++.