Home

Awesome

<p align="center"> <img src="images/logo.png"> </p>

Swift for TensorFlow

Swift for TensorFlow: No boundaries.

Swift for TensorFlow is a next-generation platform for machine learning, incorporating the latest research across machine learning, compilers, differentiable programming, systems design, and beyond. This is an early-stage project: it is not feature-complete nor production-ready, but it is ready for pioneers to try in projects, give feedback, and help shape the future!

The Swift for TensorFlow project is currently focusing on 2 kinds of users:

  1. Advanced ML researchers who are limited by current ML frameworks. Swift for TensorFlow's advantages include seamless integration with a modern general-purpose language, allowing for more dynamic and sophisticated models. Fast abstractions can be developed in "user-space" (as opposed to in C/C++, aka "framework-space"), resulting in modular APIs that can be easily customized.

  2. ML learners who are just getting started with machine learning. Thanks to Swift's support for quality tooling (e.g. context-aware autocompletion), Swift for TensorFlow can be one of the most productive ways to start learning the fundamentals of machine learning.

Getting started

Using Swift for TensorFlow

Tutorials

TutorialLast Updated
A Swift TourMarch 2019
Protocol-Oriented Programming & GenericsAugust 2019
Python InteroperabilityMarch 2019
Custom DifferentiationMarch 2019
Sharp Edges in DifferentiabilityNovember 2020
Model Training WalkthroughMarch 2019
Raw TensorFlow OperatorsDecember 2019
Introducing X10, an XLA-Based BackendMay 2020

Resources

<!-- ### Forums The discussions happened on the [swift@tensorflow.org mailing list](https://groups.google.com/a/tensorflow.org/d/forum/swift). -->

Why Swift for TensorFlow?

Swift for TensorFlow is a new way to develop machine learning models. It gives you the power of TensorFlow directly integrated into the Swift programming language. We believe that machine learning paradigms are so important that they deserve first-class language and compiler support.

A fundamental primitive in machine learning is gradient-based optimization: computing function derivatives to optimize parameters. With Swift for TensorFlow, you can easily differentiate functions using differential operators like gradient(of:), or differentiate with respect to an entire model by calling method gradient(in:). These differentiation APIs are not just available for Tensor-related concepts—they are generalized for all types that conform to the Differentiable protocol, including Float, Double, SIMD vectors, and your own data structures.

// Custom differentiable type.
struct Model: Differentiable {
    var w: Float
    var b: Float
    func applied(to input: Float) -> Float {
        return w * input + b
    }
}

// Differentiate using `gradient(at:_:in:)`.
let model = Model(w: 4, b: 3)
let input: Float = 2
let (𝛁model, 𝛁input) = gradient(at: model, input) { model, input in
    model.applied(to: input)
}

print(𝛁model) // Model.TangentVector(w: 2.0, b: 1.0)
print(𝛁input) // 4.0

Beyond derivatives, the Swift for TensorFlow project comes with a sophisticated toolchain to make users more productive. You can run Swift interactively in a Jupyter notebook, and get helpful autocomplete suggestions to help you explore the massive API surface of a modern deep learning library. You can get started right in your browser in seconds!

Migrating to Swift for TensorFlow is really easy thanks to Swift's powerful Python integration. You can incrementally migrate your Python code over (or continue to use your favorite Python libraries), because you can easily call your favorite Python library with a familiar syntax:

import TensorFlow
import Python

let np = Python.import("numpy")

let array = np.arange(100).reshape(10, 10)  // Create a 10x10 numpy array.
let tensor = Tensor<Float>(numpy: array)  // Seamless integration!

Documentation

Beware: the project is moving very quickly, and thus some of these documents are slightly out of date as compared to the current state-of-the-art.

Overview

DocumentLast UpdatedStatus
Why Swift for TensorFlow?April 2018Current
Swift for TensorFlow Design OverviewApril 2018Outdated
Supported BackendsMay 2020Current

Technology deep dive

The Swift for TensorFlow project builds on top of powerful theoretical foundations. For insight into some of the underlying technologies, check out the following documentation.

DocumentLast UpdatedStatus
Swift Differentiable Programming ManifestoDecember 2021Current
Swift Differentiable Programming Implementation OverviewJanuary 2022Current
Swift Differentiable Programming Design OverviewJune 2019Outdated
Differentiable TypesMarch 2019Outdated
Differentiable Functions and Differentiation APIsMarch 2019Outdated
Dynamic Property Iteration using Key PathsMarch 2019Current
Hierarchical Parameter Iteration and OptimizationMarch 2019Current
First-Class Automatic Differentiation in Swift: A ManifestoOctober 2018Outdated
Automatic Differentiation WhitepaperApril 2018Outdated
Python InteroperabilityApril 2018Current
Graph Program ExtractionApril 2018Outdated

Source code

Compiler and standard library development happens on the main branch of the apple/swift repository.

Additional code repositories that make up the core of the project include:

Swift for TensorFlow is no longer a fork of the official Swift language; development was previously done on the tensorflow branch of the apple/swift repository. Language additions were designed to fit with the direction of Swift and are going through the Swift Evolution process.

Jupyter Notebook support

Jupyter Notebook support for Swift is under development at google/swift-jupyter.

Model garden

tensorflow/swift-models is a repository of machine learning models built with Swift for TensorFlow. It intended to provide examples of how to use Swift for TensorFlow, to allow for end-to-end tests of machine learning APIs, and to host model benchmarking infrastructure.

SwiftAI

fastai/swiftai is a high-level API for Swift for TensorFlow, modeled after the fastai Python library.

Community

<!-- Swift for TensorFlow discussions happen on the [swift@tensorflow.org mailing list](https://groups.google.com/a/tensorflow.org/d/forum/swift). -->

Bugs reports and feature requests

Before reporting an issue, please check the Frequently Asked Questions to see if your question has already been addressed.

For questions about general use or feature requests, please send an email to the mailing list or search for relevant issues in the JIRA issue tracker.

For the most part, the core team's development is also tracked in JIRA.

Contributing

We welcome contributions from everyone. Read the contributing guide for information on how to get started.

Code of conduct

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

The Swift for TensorFlow community is guided by our Code of Conduct, which we encourage everybody to read before participating.