Awesome
Token Contrast for Weakly-Supervised Semantic Segmentation
Code of CVPR 2023 paper: Token Contrast for Weakly-Supervised Semantic Segmentation.
<div align="center"> <br> <img width="100%" alt="AFA flowchart" src="./docs/imgs/toco.png"> </div> <!-- ## Abastract -->We proposed Token Contrast to address the over-smoothing issue and further leverage the virtue of ViT for the Weakly-Supervised Semantic Segmentation task.
Data Preparations
<details> <summary> VOC dataset </summary>1. Download
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar –xvf VOCtrainval_11-May-2012.tar
2. Download the augmented annotations
The augmented annotations are from SBD dataset. Here is a download link of the augmented annotations at
DropBox. After downloading SegmentationClassAug.zip
, you should unzip it and move it to VOCdevkit/VOC2012
. The directory sctructure should thus be
VOCdevkit/
└── VOC2012
├── Annotations
├── ImageSets
├── JPEGImages
├── SegmentationClass
├── SegmentationClassAug
└── SegmentationObject
</details>
<details>
<summary>
COCO dataset
</summary>
1. Download
wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
2. Generating VOC style segmentation labels for COCO
To generate VOC style segmentation labels for COCO dataset, you could use the scripts provided at this repo. Or, just download the generated masks from Google Drive.
I recommend to organize the images and labels in coco2014
and SegmentationClass
, respectively.
MSCOCO/
├── coco2014
│ ├── train2014
│ └── val2014
└── SegmentationClass
├── train2014
└── val2014
</details>
Create environment
I used docker to build the enviroment.
## build docker
docker bulid -t toco --network=host -< Dockerfile
## activate docker
docker run -it --gpus all --network=host --ipc=host -v $CODE_PATH:/workspace/TOCO -v /$VOC_PATH:/workspace/VOCdevkit -v $COCO_ANNO_PATH:/workspace/MSCOCO -v $COCO_IMG_PATH:/workspace/coco2014 toco:latest /bin/bash
Clone this repo
git clone https://github.com/rulixiang/toco.git
cd toco
Build Reg Loss
To use the regularized loss, download and compile the python extension, see Here.
Train
To start training, just run:
## for VOC
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 scripts/dist_train_voc_seg_neg.py --work_dir work_dir_voc
## for COCO
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=29501 scripts/dist_train_coco_seg_neg.py --work_dir work_dir_coco
Evalution
To evaluation:
## for VOC
python tools/infer_seg_voc.py --model_path $model_path --backbone vit_base_patch16_224 --infer val
## for COCO
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=29501 tools/infer_seg_voc.py --model_path $model_path --backbone vit_base_patch16_224 --infer val
<!-- You should get the training logs by running the above commands. Also, check our training log under `logs/`. -->
Results
Here we report the performance on VOC and COCO dataset. MS+CRF
denotes multi-scale test and CRF processing.
Dataset | Backbone | val | Log | Weights | val (with MS+CRF) | test (with MS+CRF) |
---|---|---|---|---|---|---|
VOC | DeiT-B | 68.1 | log | weights | 69.8 | 70.5 |
VOC | ViT-B | 69.2 | log | weights | 71.1 | 72.2 |
COCO | DeiT-B | -- | log | weights | 41.3 | -- |
COCO | ViT-B | -- | log | weights | 42.2 | -- |
Citation
Please kindly cite our paper if you find it's helpful in your work.
@inproceedings{ru2023token,
title = {Token Contrast for Weakly-Supervised Semantic Segmentation},
author = {Lixiang Ru and Heliang Zheng and Yibing Zhan and Bo Du}
booktitle = {CVPR},
year = {2023},
}
Acknowledgement
We mainly use ViT-B and DeiT-B as the backbone, which are based on timm. Also, we use the Regularized Loss. Many thanks to their brilliant works!