Home

Awesome

Semi-Open Relation Extraction

The Focused Open Biology Information Extraction (FOBIE) dataset aims to support IE from Computer-Aided Biomimetics. The dataset contains ~1,500 sentences from scientific biological texts. These sentences are annotated with TRADE-OFFS and syntactically similar relations between unbounded arguments, as well as argument-modifiers.

The FOBIE dataset has been used to explore Semi-Open Relation Extraction (SORE). The code for this and instructions can be found inside the SORE folder Readme.md, or in the ReadTheDocs documentations.

Format

The train/test/dev data files are provided in two formats. A verbose json format inspired on the Semeval2018 task 7 dataset:

{"[document_ID]":
  {"[relation_ID_within_document]":
    {"annotations":
      {"modifiers":
        {"[within_sentence_modifier_ID]":
          {"Arg0": {"span_start": "[token_index]",
                    "span_end": "[token_index]",
                    "span_id": "[brat_ID]",
                    "text": "[string]"},
           "Arg1": {"span_start": "[token_index]",
                    "span_end": "[token_index]",
                    "span_id": "[brat_ID]",
                    "text": "[string]"}
          }
       },
     "tradeoffs":
        {"[within_sentence_tradeoff_ID]":
          {"Arg0": {"span_start": "[token_index]",
                    "span_end": "[token_index]",
                    "span_id": "[brat_ID]",  
                    "text": "[string]"},
          "Arg1": {"span_start": "[token_index]",
                   "span_end": "[token_index]",
                   "span_id": "[brat_ID]",  
                   "text": "[string]"},           
          "TO_indicator": {"span_start": "[token_index]",
                           "span_end": "[token_index]",
                           "span_id": "[brat_ID]",  
                           "text": "[string]"},
          "labels": {"Confidence": "High"}
        }
      }
    },
    "sentence": "[string]"
  }
},

And the Sci-ERC dataset format, which is used to train the SciIE system:

{   "clusters": [],
    "sentences": [["List", "of", "some", "tokens", "."]],
    "ner": [[[4, 4, "Generic"]]],
    "relations": [[[4, 4, 6, 17, "Tradeoff"]]],
    "doc_key": "XXX"}

We also provide a script to convert data from the verbose format to SciIE format, as well as a script to convert BRAT annotations to the verbose format.

Statistics

Also see dataset_statistics.py under the scripts folder.

TrainDevTestTotal
<sub># Unique documents </sub><sub>1010</sub><sub>138</sub><sub>144</sub><sub>1292</sub>
<sub># Sentences</sub><sub>1248</sub><sub>150</sub><sub>150</sub><sub>1548</sub>
<sub>Avg. sent. length</sub><sub>37.42</sub><sub>38.91</sub><sub>40.02</sub><sub>37.81</sub>
<sub>% of sents ≥ 25 tokens</sub><sub>82.21 %</sub><sub>85.33 %</sub><sub>83.33 %</sub><sub>82.62%</sub>
<sub>Relations:</sub>
<sub> - Trade-Off</sub><sub>639</sub><sub>54</sub><sub>72</sub><sub>765</sub>
<sub> - Not-a-Trade-Off</sub><sub>2004</sub><sub>258</sub><sub>240</sub><sub>2502</sub>
<sub> - Arg-Modifier</sub><sub>1247</sub><sub>142</sub><sub>132</sub><sub>1521</sub>
<sub>Triggers</sub><sub>1292</sub><sub>155</sub><sub>153</sub><sub>1600</sub>
<sub>Keyphrases</sub><sub>3436</sub><sub>401</sub><sub>398</sub><sub>4235</sub>
<sub>Keyphrases w/ multiple relations</sub><sub>1600</sub><sub>188</sub><sub>163</sub><sub>1951</sub>
<sub>Spans</sub><sub>4728</sub><sub>556</sub><sub>551</sub><sub>5835</sub>
<sub>Max relations/sent</sub><sub>9 </sub><sub>8 </sub><sub>8 </sub>
<sub>Max spans/sent</sub><sub>9</sub><sub>8 </sub><sub>8 </sub>
<sub>Max triggers/sent</sub><sub>2 </sub><sub>2 </sub><sub>2 </sub>
<sub>Max args/trigger</sub><sub>5 </sub><sub>4 </sub><sub>4 </sub>
<sub>Unique spans</sub><sub>3643</sub>
<sub>Unique triggers</sub><sub>41 </sub>
<sub># single-word keyphrases</sub><sub>864 (20.4%) </sub>
<sub>Avg. tokens per keyphrase</sub><sub>3.46 </sub>

If you use the FOBIE dataset or SORE code in your research, please consider citing the following papers:

@inproceedings{Kruiper2020_SORE,
  author =      "Kruiper, Ruben
                and Vincent, Julian F V
                and Chen-Burger, Jessica
                and Desmulliez, Marc P Y
                and Konstas, Ioannis",
  title =       "In Layman's Terms: Semi-Open Relation Extraction from Scientific Texts"
  year =        "2020",
  url =         "https://arxiv.org/pdf/2005.07751.pdf",
  arxivId =     "2005.07751"
}
@inproceedings{Kruiper2020_FOBIE,
  author =      "Kruiper, Ruben
                and Vincent, Julian F V
                and Chen-Burger, Jessica
                and Desmulliez, Marc P Y
                and Konstas, Ioannis",
  title =       "A Scientific Information Extraction Dataset for Nature Inspired Engineering"
  booktitle =   "Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)",
  year =        "2020",
  keywords =    "Biomimetics,Relation Extraction,Scientific Information Extraction,Trade-Offs",
  pages =       "2078--2085",
  url =         "http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.255.pdf",
  arxivId =     "2005.07753"
}

The FOBIE dataset along with SORE code in this repository are licensed under a Creative Commons Attribution 4.0 License. <img src="https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by-sa.png" width="134" height="47">