Awesome
Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments
Introduction
FedD3 is a federated learning framework designed to train models using decentralized dataset distillation, requiring only a single communication round. This repository contains four main modules:
- Dataset preprocessing: Splits the dataset into a number of clients according to federated settings.
- FedD3 implementation: PyTorch implementation of FedD3 with coreset-based and KIP-based instances.
- Baseline implementations: PyTorch implementations of federated learning baselines, including FedAvg, FedNova, FedProx, and SCAFFOLD.
- Postprocessing: Visualizes training results for evaluation.
Installation
Dependencies
- Python (3.8)
- PyTorch (1.8.1)
- sklearn (0.24.2)
- OpenCV (4.5)
- numpy (1.21.5)
- neural-tangents (0.6.0)
- jaxlib (0.3.7)
Install requirements
Run the following command to install the required packages:
pip install -r requirements.txt
Federated Dataset Preprocessing
This module divides the entire dataset into a specified number of clients based on federated settings. Non-IID datasets are created depending on the value of C_k
(the number of classes in each local dataset) to introduce label distribution skew.
By calling the divide_data()
function, one of the datasets used in this paper (i.e., MNIST, CIFAR-10, Fashion-MNIST, and SVHN) is automatically downloaded via PyTorch. This module is integrated into the main functions of FedD3 and baselines.
Running FedD3
Test Run
python fedd3_main.py -nc 500 \
-ck 10 \
-ds 'MNIST' \
-md 'LeNet' \
-is 0 \
-rr 'results' \
-sne 500 \
-sbs 50 \
-slr 0.001 \
-smt 0.9 \
-snw 1 \
-cis 'kip_distill'\
-cnd 10 \
-cil 0.004 \
-cib 10 \
-cie 3000 \
-cit 0.999
Explanations of Arguments
-
--sys-n_client
-nc
: Number of clients -
--sys-n_local_class
-ck
: Number of classes in each client -
--sys-dataset
-ds
: Dataset name (one of "MNIST", "CIFAR-10", "FashionMnist", "SVHN", or "CIFAR100") -
--sys-model
-md
: Model name (e.g., "LeNet" for MNIST, "AlexCifarNet" for CIFAR-10, "CNN" for CIFAR-100) -
--sys-i_seed
-is
: Seed used in experiments -
--sys-res_root
-rr
: Root directory of results -
--server-n_epoch
-sne
: Number of server training epochs -
--server-bs
-sbs
: Server batch size -
--server-lr
-slr
: Server learning rate -
--server-momentum
-smt
: Server momentum -
--server-n_worker
-snw
: Number of server workers -
--client-instance
-cis
: Instance used in clients ("kip_distill", "herding", etc.) -
--client-n_dd
-cnd
: Number of distilled images in clients -
--client-instance_lr
-cil
: Client learning rate -
--client-instance_bs
-cib
: Client batch size -
--client-instance_max_n_epoch
-cie
: Maximum number of client epochs -
--client-instance_threshold
-cit
: Dataset distillation accuracy threshold for clients
Examples
-
Examples I Run FedD3 on IID MNIST with 500 clients:
python fedd3_main.py -nc 500 -ck 10 -ds 'MNIST' -md 'LeNet' -is 0 -rr 'results' -sne 500 -sbs 50 -slr 0.001 -smt 0.9 -snw 1 -cis 'kip_distill' -cnd 10 -cil 0.004 -cib 10 -cie 3000 -cit 0.999
-
Examples II Run FedD3 on Non-IID MNIST with 500 clients:
python fedd3_main.py -nc 500 -ck 2 -ds 'MNIST' -md 'LeNet' -is 0 -rr 'results' -sne 500 -sbs 50 -slr 0.001 -smt 0.9 -snw 1 -cis 'kip_distill' -cnd 2 -cil 0.004 -cib 10 -cie 3000 -cit 0.999
-
Results
Running Federated Learning Baselines
Test Run
python baselines_main.py -nc 10 \
-ck 10 \
-ds 'MNIST' \
-md 'LeNet' \
-is 0 \
-rr 'results' \
-nr 500 \
-os 1\
-cis 'FedAvg' \
-cil 0.001 \
-cib 50 \
-cie 1 \
-sim 0.9 \
-sin 1
Explanations of Arguments
-
--sys-n_client
-nc
: Number of clients -
--sys-n_local_class
-ck
: Number of classes in each client -
--sys-dataset
-ds
: Dataset name (one of "MNIST", "CIFAR10", "FashionMnist", "SVHN", or "CIFAR100") -
--sys-model
-md
: Model name -
--sys-i_seed
-is
: Seed used in experiments -
--sys-res_root
-rr
: Root directory of the results -
--sys-n_round
-nr
: Number of global communication rounds -
--sys-oneshot
-os
: True for one-shot communication; otherwise, False -
--client-instance
-cis
: Federated learning algorithm instance used in clients ("FedAvg", "SCAFFOLD", "FedNova", or "FedProx") -
--client-instance_lr
-cil
: Client learning rate -
--client-instance_bs
-cib
: Client batch size -
--client-instance_n_epoch
-cie
: Number of local training epochs in clients -
--client-instance_momentum
-sim
: Client momentum -
--client-instance_n_worker
-sin
: Number of server workers
Examples
-
Example III Run:
python baselines_main.py -nc 500 -ck 10 -ds 'MNIST' -md 'LeNet' -is 0 -rr 'results' -nr 18 -cis 'FedAvg' -cil 0.001 -cib 50 -cie 50 -sim 0.9 -sin 1
-
Example IV Run SCAFFOLD on Non-IID MNIST with 500 clients: Run:
python baselines_main.py -nc 500 -ck 2 -ds 'MNIST' -md 'LeNet' -is 0 -rr 'results' -nr 18 -cis 'SCAFFOLD' -cil 0.001 -cib 50 -cie 50 -sim 0.9 -sin 1
-
Results
Evaluation Procedures
To plot the testing accuracy and training loss over epochs or communication rounds, run:
python postprocessing/eval_main.py -rr 'results'
Note that the labels in the figure correspond to the names of the result files.
Citation
@article{song2022federated,
title={Federated learning via decentralized dataset distillation in resource-constrained edge environments},
author={Song, Rui and Liu, Dai and Chen, Dave Zhenyu and Festag, Andreas and Trinitis, Carsten and Schulz, Martin and Knoll, Alois},
journal={arXiv preprint arXiv:2208.11311},
year={2022}
}
Acknowledgement
For the evaluation of baseline models, we utilized the PyTorch implementations found in the pytorch_federated_learning repository.