Home

Awesome

IDAAC: Invariant Decoupled Advantage Actor-Critic

This is a PyTorch implementation of the methods proposed in

Decoupling Value and Policy for Generalization in Reinforcement Learning by

Roberta Raileanu and Rob Fergus.

Citation

If you use this code in your own work, please cite our paper:

@article{Raileanu2021DecouplingVA,
  title={Decoupling Value and Policy for Generalization in Reinforcement Learning},
  author={Roberta Raileanu and R. Fergus},
  journal={ArXiv},
  year={2021},
  volume={abs/2102.10330}
}

Requirements

To install all the required dependencies:

conda create -n idaac python=3.7
conda activate idaac

cd idaac
pip install -r requirements.txt

pip install procgen

git clone https://github.com/openai/baselines.git
cd baselines 
python setup.py install 

Instructions

This repo provides instructions for training IDAAC, DAAC, and PPO on the Procgen benchmark.

Train IDAAC on CoinRun

python train.py --env_name coinrun --algo idaac

Train DAAC on CoinRun

python train.py --env_name coinrun --algo daac

Train PPO on CoinRun

python train.py --env_name coinrun --algo ppo --ppo_epoch 3

Note: The default code uses the same set of hyperparameters (HPs) for all environments, which are the best ones overall. In our studies, we've found some of the games can further benefit from slightly different HPs, so we provide those as well. To use the best hyperparameters for each environment, use the flag --use_best_hps.

Overview of DAAC and IDAAC

IDAAC Overview

Procgen Results

IDAAC achieves state-of-the-art performance on the Procgen benchmark (easy mode), significantly improving the agent's generalization ability over standard RL methods such as PPO.

Test Results on Procgen

Procgen Test Results

Acknowledgements

This code was based on an open sourced PyTorch implementation of PPO.