Awesome
crop-type-mapping
Crop type mapping of small holder farms in Ghana and South Sudan
INSTALLATION INSTRUCTIONS
Install Python 3.6
Install conda and build the environment with the following command:
conda env create -f environment.yaml
DATASET / ENVIRONMENT SETUP
These datasets are now available for free on Radiant Earth's MLHub, and through Sustain Bench.
Radiant Earth MLHub
- The dataset for Ghana is here: http://registry.mlhub.earth/10.34911/rdnt.ry138p/
- The dataset for South Sudan is here: http://registry.mlhub.earth/10.34911/rdnt.v6kx6n/
- The dataset files are saved as tifs, and will need to be restructured to work as input to the model, which initially used an hdf5 file.
Sustain Bench
- Both dataset are available via pytorch data loaders
- See more information here: https://sustainlab-group.github.io/sustainbench/docs/datasets/sdg2/crop_type_mapping_ghana-ss.html
RUN INSTRUCTIONS
To visualize training, open a separate terminal and run the following before running the main training code:
python -m visdom.server
Replace “localhost” with the static IP address provided on google cloud
To start training models, use the train.py script in the root directory of the code.
Example for CLSTM-only network:
python train.py --model_name=only_clstm_mi --country=southsudan --var_length --name=southsudan_clstmonly --env_name=myenv --dataset=full --epochs=130 --batch_size=5 --optimizer=adam --lr=0.003 --weight_decay=0 --loss_weight=True --weight_scale=1 --seed=1 --s2_num_bands=10 --dropout=0.5 --clip_val=True
Example for 3D UNet model:
python train.py --model_name=unet3d --country=southsudan --num_timesteps=24 --lr=0.0003 --s2_agg=False --include_indices=True --include_doy=True --use_planet=True --planet_agg=False --name=southsudan_3dunet_use_planet_noagg --env_name=myenv --dataset=full --epochs=130 --batch_size=5 --optimizer=adam --weight_decay=0 --loss_weight=True --weight_scale=1 --seed=1 --s2_num_bands=10 --dropout=0.5 --clip_val=True --hidden_dims=128
Example for Multi-Input 2D UNet + CLSTM model:
python train.py --model_name=mi_clstm --country=ghana --var_length --main_crnn=True --early_feats True --include_indices=True --include_doy False --sample_w_clouds False --include_clouds False --lst_cloudy False --use_planet=True --resize_planet=False --name=ghana_use_planet_highres --env_name=ghana_use_planet_highres --use_s1=True --dataset=full --epochs=130 --batch_size=5 --optimizer=adam --lr=0.003 --weight_decay=0 --loss_weight=True --weight_scale=1 --seed=1 --s2_num_bands=10 --dropout=0.5 --clip_val=True
Example for Multi-Input 2D UNet + CLSTM earlier fused model:
python train.py --model_name=fcn_crnn --country=southsudan --name=southsudan_fcn_crnn --env_name=myenv --dataset=full --epochs=130 --batch_size=5 --optimizer=adam --lr=0.001 --weight_decay=0 --loss_weight=True --weight_scale=1 --seed=1 --s2_num_bands=10 --dropout=0.5 --clip_val=True --include_s1=True
Model type and country are set with the model_name
and country
flags, respectively. Flags also control several properties of inputs such as satellite types, temporal aggregation, Planet imagery resolution, cloud sampling, etc. Additional hyperparameter tuning settings can be set by invoking the appropriate flags. See get_train_parser
in util.py
for full details.