Awesome
Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning
-
Framework to capture the dynamics of high-frequency limit order books.
<img src="./Graph/pipline.png" width="650">
Overview
In this project I used machine learning methods to capture the high-frequency limit order book dynamics and simple trading strategy to get the P&L outcomes.
-
Feature Extractor
-
Rise Ratio
<img src="./Graph/Price_B1A1.png" width="650"> -
Depth Ratio
<img src="./Graph/depth.png" width="650">[Note] : [Feature_Selection] (Feature_Selection)
-
-
Learning Model Trainer
- RandomForestClassifier
- ExtraTreesClassifier
- AdaBoostClassifier
- GradientBoostingClassifier
- SVM
-
Use best model to predict next 10 seconds
<img src="./Graph/CV_Best_Model.png" width="650"> -
Prediction outcome
<img src="./Graph/prediction.png" width="650"> -
Profit & Loss
<img src="./Graph/P_L.png" width="650">[Note] : [Model_Selection] (Model_Selection)