Awesome
nodbi
<!-- badges: start --> <!-- badges: end -->
nodbi
is an R package that provides a single interface for several
NoSQL databases and databases with JSON functionality, with the same
function parameters and return values across all database backends. Last
updated 2024-11-10.
Currently, nodbi supports<br/>as database backends | for an R object of any<br/>of these data types | for these operations |
---|---|---|
MongoDB | data.frame | List, Exists |
SQLite | list | Create |
PostgreSQL | JSON string | Get |
DuckDB | file name of NDJSON records | Query |
Elasticsearch | URL of NDJSON records | Update |
CouchDB | Delete |
For speed comparisons of database backends, see benchmark and testing below.
API overview
Parameters for docdb_*()
functions are the same across all database
backends. See walk-through below and the canonical
testing in core-nodbi.R. “Container” is
used as term to indicate where conceptually the backend holds the data,
see Database connections below. The key
parameter holds the name of a container.
Purpose | Function call |
---|---|
Create database connection (see below) | src <- nodbi::src_{duckdb, postgres, mongo, sqlite, couchdb, elastic}(<see below for parameters>) |
Load my_data (a data frame, list, JSON string, or file name or URL pointing to NDJSON records) into database, container my_container | nodbi::docdb_create(src = src, key = "my_container", value = my_data) |
Get all documents back into a data frame | nodbi::docdb_get(src = src, key = "my_container") |
Get documents selected with query (as MongoDB-compatible JSON) into a data frame | nodbi::docdb_query(src = src, key = "my_container", query = '{"age": 20}') |
Get selected fields (in MongoDB compatible JSON) from documents selected by query into a data frame | nodbi::docdb_query(src = src, key = "my_container", query = '{"age": {"$gt": 20}}', fields = '{"friends.name": 1, "_id": 0, "age": 1}', limit = 2L) |
Update (patch) documents selected by query with new data my_data (in a data frame, list, JSON string, or file name or URL pointing to NDJSON records) | nodbi::docdb_update(src = src, key = "my_container", value = my_data, query = '{"age": 20}') |
Check if container exists | nodbi::docdb_exists(src = src, key = "my_container") |
List all containers in database | nodbi::docdb_list(src = src) |
Delete document(s) in container | nodbi::docdb_delete(src = src, key = "my_container", query = '{"age": 20}') |
Delete container | nodbi::docdb_delete(src = src, key = "my_container") |
Close and remove database connection manually (when restarting R, connections are automatically closed and removed by nodbi ) | rm(src) |
Install
CRAN version
install.packages("nodbi")
Development version
remotes::install_github("ropensci/nodbi")
Load package from library
library("nodbi")
Database connections
Overview on parameters and aspects that are specific to the database
backend. These are only needed once, for for src_*()
to create a
connection object. Any such connection object is subsequently used
similarly across the docdb_*
functions.
“Container” refers to how conceptually the backend holds the data. Data
types are mapped from JSON to R objects by
jsonlite. Any root-level
_id
is extracted from the document(s) and used for an index column
_id
, otherwise a UUID is created as _id
.
DuckDB
See also https://CRAN.R-project.org/package=duckdb. “Container” refers
to a DuckDB table, with columns _id
and json
created and used by
package nodbi
, applying SQL functions and functions as per
https://duckdb.org/docs/extensions/json to the json
column. Each row
in the table represents a JSON
document.
src <- nodbi::src_duckdb(dbdir = ":memory:", ...)
MongoDB
“Container” refers to a MongoDB collection, in which nodbi
creates
JSON documents. See also https://jeroen.github.io/mongolite/. MongoDB
but none of the other databases require to specify the container name
already in the src_*()
function; use the collection
name for
parameter key
in docdb_*
functions.
src <- nodbi::src_mongo(
collection = "my_container", db = "my_database",
url = "mongodb://localhost", ...)
SQLite
“Container” refers to an SQLite table, with columns _id
and json
created and used by package nodbi
, applying SQL functions and
functions as per https://www.sqlite.org/json1.html to the json
column. Each row in the table represents a JSON
document. The table is
indexed on _id
. See also https://CRAN.R-project.org/package=RSQLite.
src <- nodbi::src_sqlite(dbname = ":memory:", ...)
CouchDB
“Container” refers to a CouchDB database, in which nodbi
creates JSON
documents. See also https://CRAN.R-project.org/package=sofa. With
CouchDB, function docdb_update()
uses
jqr to implement patching
JSON, in analogy to functions available for the other databases.
src <- nodbi::src_couchdb(
host = "127.0.0.1", port = 5984L, path = NULL,
transport = "http", user = NULL, pwd = NULL, headers = NULL)
Elasticsearch
“Container” refers to an Elasticsearch index, in which nodbi
creates
JSON documents. Opensearch can equally be used. See also
https://CRAN.R-project.org/package=elastic. Only lowercase is accepted
for container names (in parameter key
of docdb_*
functions).
src <- nodbi::src_elastic(
host = "127.0.0.1", port = 9200L, path = NULL,
transport_schema = "http", user = NULL, pwd = NULL, ...)
PostgreSQL
“Container” refers to a PostgreSQL table, with columns _id
and json
created and used by package nodbi
, applying SQL functions and
functions as per
https://www.postgresql.org/docs/current/functions-json.html to the
json
column. With PostgreSQL, a custom plpgsql
function
jsonb_merge_patch()
is used for docdb_update()
. The order of variables in data frames
returned by docdb_get()
and docdb_query()
can differ from their
order the input to docdb_create()
.
src <- nodbi::src_postgres(
dbname = "my_database", host = "127.0.0.1", port = 5432L, ...)
Walk-through
This example is to show how functional nodbi
is at this time: With any
of the six database backends, the functions work in the same way and
return the same values.
# load nodbi
library(nodbi)
# name of container
key <- "my_container"
# connect any of these database backends
src <- src_duckdb()
src <- src_mongo(collection = key)
src <- src_sqlite()
src <- src_postgres()
src <- src_elastic()
src <- src_couchdb(
user = Sys.getenv("COUCHDB_TEST_USER"),
pwd = Sys.getenv("COUCHDB_TEST_PWD"))
# check if container already exists
docdb_exists(src, key)
# [1] FALSE
# load data (here data frame, alternatively a list, JSON or file with NSJSON)
# into the container "my_container" specified in "key" parameter
docdb_create(src, key, value = mtcars)
# [1] 32
# load additionally 98 NDJSON records
docdb_create(src, key, "https://httpbin.org/stream/98")
# Note: container 'my_container' already exists
# [1] 98
# load additionally contacts JSON data, from package nodbi
docdb_create(src, key, contacts)
# Note: container 'my_container' already exists
# [1] 5
# get all documents, irrespective of schema
dplyr::tibble(docdb_get(src, key))
# # A tibble: 135 × 27
# `_id` isActive balance age eyeColor name email about registered tags friends
# <chr> <lgl> <chr> <int> <chr> <chr> <chr> <chr> <chr> <list> <list>
# 1 5cd6… TRUE $2,412… 20 blue Kris… kris… "Sin… 2017-07-1… <chr> <df>
# 2 5cd6… FALSE $3,400… 20 brown Rae … raec… "Nis… 2018-12-1… <chr> <df>
# 3 5cd6… TRUE $1,161… 22 brown Pace… pace… "Eiu… 2018-08-1… <chr> <df>
# 4 5cd6… FALSE $2,579… 30 brown Will… will… "Nul… 2018-02-1… <chr> <df>
# 5 5cd6… FALSE $3,808… 23 green Lacy… lacy… "Sun… 2014-08-0… <chr> <df>
# 6 69bc… NA NA NA NA NA NA NA NA <NULL> <NULL>
# 7 69bc… NA NA NA NA NA NA NA NA <NULL> <NULL>
# 8 69bc… NA NA NA NA NA NA NA NA <NULL> <NULL>
# 9 69bc… NA NA NA NA NA NA NA NA <NULL> <NULL>
# 10 69bc… NA NA NA NA NA NA NA NA <NULL> <NULL>
# # ℹ 125 more rows
# # ℹ 16 more variables: url <chr>, args <df[,0]>, headers <df[,4]>, origin <chr>,
# # id <int>, mpg <dbl>, cyl <int>, disp <dbl>, hp <int>, drat <dbl>, wt <dbl>,
# # qsec <dbl>, vs <int>, am <int>, gear <int>, carb <int>
# # ℹ Use `print(n = ...)` to see more rows
# query some documents
docdb_query(src, key, query = '{"mpg": {"$gte": 30}}')
# _id mpg cyl disp hp drat wt qsec vs am gear carb
# 1 Fiat 128 32 4 79 66 4.1 2.2 19 1 1 4 1
# 2 Honda Civic 30 4 76 52 4.9 1.6 19 1 1 4 2
# 3 Toyota Corolla 34 4 71 65 4.2 1.8 20 1 1 4 1
# 4 Lotus Europa 30 4 95 113 3.8 1.5 17 1 1 5 2
# query some fields from some documents; 'query' is a mandatory
# parameter and is used here in its position in the signature
docdb_query(src, key, '{"mpg": {"$gte": 30}}', fields = '{"wt": 1, "mpg": 1}')
# _id wt mpg
# 1 Fiat 128 2.2 32
# 2 Honda Civic 1.6 30
# 3 Lotus Europa 1.5 30
# 4 Toyota Corolla 1.8 34
# query some subitem fields from some documents
str(docdb_query(
src, key,
query = '{"$or": [{"age": {"$gt": 21}},
{"friends.name": {"$regex": "^B[a-z]{3,9}.*"}}]}',
fields = '{"age": 1, "friends.name": 1}'))
# 'data.frame': 3 obs. of 3 variables:
# $ _id : chr "5cd6785325ce3a94dfc54096" "5cd6785335b63cb19dfa8347" "5cd67853f841025e65ce0ce2"
# $ age : int 22 30 23
# $ friends.name:List of 3
# ..$ : chr "Baird Keller" "Francesca Reese" "Dona Bartlett"
# ..$ : chr "Coleen Dunn" "Doris Phillips" "Concetta Turner"
# ..$ : chr "Wooten Goodwin" "Brandie Woodward" "Angelique Britt"
# such queries can also be used for updating (patching) selected documents
# with a new 'value'(s) from a JSON string, a data frame a list or a file with NSJSON)
docdb_update(src, key, value = '{"vs": 9, "xy": [1, 2]}', query = '{"carb": 3}')
# [1] 3
docdb_query(src, key, '{"carb": {"$in": [1,3]}}', fields = '{"vs": 1, "_id": 0}')[[1]]
# [1] 1 1 1 9 9 9 1 1 1 1
docdb_get(src, key)[c(3, 109, 130, 101), c("_id", "xy", "url", "email")]
# _id xy url email
# 3 5cd6785325ce3a94dfc54096 NULL <NA> pacebell@conjurica.com
# 109 Dodge Challenger NULL <NA> <NA>
# 130 Pontiac Firebird NULL <NA> <NA>
# 101 69bcd195-a59c-11ee-bfb9-acbc328130bb NULL https://httpbin.org/stream/98 <NA>
# use with dplyr
# *note* that dplyr includes a (deprecated) function src_sqlite
# which would mask nodbi's src_sqlite, so it is excluded here
library("dplyr", exclude = c("src_sqlite", "src_postgres"))
#
docdb_get(src, key) %>%
group_by(gear) %>%
summarise(mean_mpg = mean(mpg))
# # A tibble: 4 × 2
# gear mean_mpg
# <int> <dbl>
# 1 3 16.1
# 2 4 24.5
# 3 5 21.4
# 4 NA NA
# delete documents; query is optional parameter and has to be
# specified for deleting documents instead of deleting the container
dim(docdb_query(src, key, query = '{"$or": [{"age": {"$lte": 20}}, {"age": {"$gte": 25}}]}'))
# [1] 3 11
docdb_delete(src, key, query = '{"$or": [{"age": {"$lte": 20}}, {"age": {"$gte": 25}}]}')
# TRUE
nrow(docdb_get(src, key))
# [1] 132
# delete container from database
docdb_delete(src, key)
# [1] TRUE
#
# shutdown
DBI::dbDisconnect(src$con, shutdown = TRUE); rm(src)
Benchmark
library("nodbi")
srcMongo <- src_mongo()
srcSqlite <- src_sqlite()
srcPostgres <- src_postgres()
srcDuckdb <- src_duckdb()
srcElastic <- src_elastic()
srcCouchdb <- src_couchdb(
user = Sys.getenv("COUCHDB_TEST_USER"),
pwd = Sys.getenv("COUCHDB_TEST_PWD"))
key <- "test"
query <- '{"clarity": {"$in": ["NOTME", "VS1"]}}'
fields <- '{"cut": 1, "_id": 1, "clarity": 1}'
value <- '{"clarity": "XYZ", "new": ["ABC", "DEF"]}'
data <- diamonds[1:1000, ]
ndjs <- tempfile()
jsonlite::stream_out(diamonds[1:10000, ], con = file(ndjs), verbose = FALSE)
testFunction <- function(src, key, value, query, fields) {
try(docdb_delete(src, key), silent = TRUE)
on.exit(docdb_delete(src, key))
suppressMessages(docdb_create(src, key, data))
suppressMessages(docdb_create(src, key, ndjs))
head(docdb_get(src, key))
docdb_query(src, key, query = query, fields = fields)
docdb_query(src, key, query = query, listfields = TRUE)
docdb_update(src, key, value = value, query = query)
}
result <- rbenchmark::benchmark(
MongoDB = testFunction(src = srcMongo, key, value, query, fields),
SQLite = testFunction(src = srcSqlite, key, value, query, fields),
Elastic = testFunction(src = srcElastic, key, value, query, fields),
CouchDB = testFunction(src = srcCouchdb, key, value, query, fields),
PostgreSQL = testFunction(src = srcPostgres, key, value, query, fields),
DuckDB = testFunction(src = srcDuckdb, key, value, query, fields),
replications = 3L
)
# 2024-11-10 with M3 hardware, databases via homebrew
result[rev(order(result$elapsed)), c('test', 'replications', 'elapsed')]
# test replications elapsed
# 4 CouchDB 3 52.81
# 3 Elastic 3 27.76
# 5 PostgreSQL 3 1.59
# 1 MongoDB 3 1.41
# 6 DuckDB 3 1.10
# 2 SQLite 3 0.71
message(R.version$version.string)
# R version 4.4.2 (2024-10-31)
pkgs <- c("RSQLite", "duckdb", "RPostgres", "mongolite", "elastic", "sofa")
for (pkg in pkgs) message(pkg, ": ", packageVersion(pkg))
# RSQLite: 2.3.7.9017
# duckdb: 1.1.2
# RPostgres: 1.4.7
# mongolite: 2.8.1
# elastic: 1.2.0
# sofa: 0.4.0
Testing
Every database backend is subjected to identical tests, see core-nodbi.R.
# 2024-11-10
suppressMessages(testthat::test_local())
# ✔ | F W S OK | Context
# ✔ | 2 175 | couchdb [47.9s]
# ✔ | 1 174 | duckdb [3.5s]
# ✔ | 2 173 | elastic [38.3s]
# ✔ | 2 173 | mongodb [3.6s]
# ✔ | 176 | postgres [4.3s]
# ✔ | 177 | sqlite [3.5s]
#
# ══ Results ══════════════════════════
# Duration: 101.2 s
#
# ── Skipped tests (7) ────────────────
# • Testing for auto disconnect and shutdown not relevant (3):
# test-couchdb.R:26:3, test-elastic.R:21:3, test-mongodb.R:24:3
# • Testing for parallel writes not possible or implemented (4):
# test-couchdb.R:26:3, test-duckdb.R:22:3,
# test-elastic.R:21:3, test-mongodb.R:24:3
#
# [ FAIL 0 | WARN 0 | SKIP 7 | PASS 1048 ]
# 2024-11-10
covr::package_coverage(path = ".", type = "tests")
# nodbi Coverage: 94.07%
# R/src_postgres.R: 79.31%
# R/src_duckdb.R: 79.49%
# R/zzz.R: 87.79%
# R/src_mongo.R: 92.59%
# R/update.R: 94.40%
# R/query.R: 94.57%
# R/get.R: 95.24%
# R/create.R: 96.25%
# R/delete.R: 98.96%
# R/exists.R: 100.00%
# R/list.R: 100.00%
# R/src_couchdb.R: 100.00%
# R/src_elasticsearch.R: 100.00%
# R/src_sqlite.R: 100.00%
Notes
- Please report any issues or bugs.
- License: MIT
- Get citation information for
nodbi
in R doingcitation(package = 'nodbi')
- Please note that this package is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
- Support for redis has been removed since version 0.5.