Awesome
<h1 align=center> Towards Scene Graph Anticipation </h1> <p align=center> Rohith Peddi, Saksham Singh, Saurabh, Parag Singla, Vibhav Gogate </p> <div align=center> <a src="https://img.shields.io/badge/project-website-green" href=""> <img src="https://img.shields.io/badge/project-website-green"> </a> <a src="https://img.shields.io/badge/paper-arxiv-red" href="https://arxiv.org/pdf/2403.04899v1.pdf"> <img src="https://img.shields.io/badge/paper-arxiv-red"> </a> <a src="https://img.shields.io/badge/bibtex-citation-blue" href=""> <img src="https://img.shields.io/badge/bibtex-citation-blue"> </a> </div> <p align="center"> (This page is under continuous update) </p>UPDATE
Sep 30th 2024: Released pre-trained models and updated code.
Aug 2024: Our submission is accepted as an Oral Presentation in ECCV.
July 2024: Towards Scene Graph Anticipation was accepted at ECCV 2024.
Mar 2024: Released code for the paper
<h3 align=center> TASK PICTURE </h3>
<h3 align=center> TECHNICAL APPROACH </h3>
ACKNOWLEDGEMENTS
This code is based on the following awesome repositories. We thank all the authors for releasing their code.
SETUP
Dataset Preparation
Estimated time: 10 hours
Follow the instructions from here
Download Charades videos data/ag/videos
Download all action genome annotations data/ag/annotations
Dump all frames data/ag/frames
Change the corresponding data file paths in datasets/action_genome/tools/dump_frames.py
Download object_bbox_and_relationship_filtersmall.pkl from here and place it in the data loader folder
Install required libraries
conda create -n sga python=3.7 pip
conda activate sga
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
pip install -r requirements.txt
Setup
Build draw_rectangles modules
cd lib/draw_rectangles
Remove any previous builds
rm -rf build/
rm -rf *.so
rm -rf *.c
rm -rf *.pyd
Build the module
python setup.py build_ext --inplace
cd ..
Add the path to the current directory to the PYTHONPATH
conda develop draw_rectangles/
Build bbox modules
cd fpn/box_intersections_cpu
Remove any previous builds
rm -rf build/
rm -rf *.so
rm -rf *.c
rm -rf *.pyd
Build the module
python setup.py build_ext --inplace
cd ..
Add the path to the current directory to the PYTHONPATH
conda develop fpn/box_intersections_cpu/
fasterRCNN model
Remove any previous builds
cd fastRCNN/lib
rm -rf build/
Change the folder paths in 'fasterRCNN/lib/faster_rcnn.egg.info/SOURCES.txt' to the current directory
python setup.py build develop
If there are any errors, check gcc version Works for 9.x.x
Follow this for changing gcc version
Download pretrained fasterRCNN model here and place in fasterRCNN/models/
CHECKPOINTS
Method Name | Checkpoint method Name |
---|---|
STTran+ | sttran_ant |
DSGDetr+ | dsgdetr_ant |
STTran++ | sttran_gen_ant |
DSGDetr++ | dsgdetr_gen_ant |
SceneSayerODE | ode |
SceneSayerSDE | sde |
Please find the checkpoints with the following name structure.
<CKPT_METHOD_NAME>_<MODE>_future_<#TRAIN_FUTURE_FRAMES>_epoch_<#STORED_EPOCH>.tar
Eg:
dsgdetr_ant_sgdet_future_3_epoch_0
ode_sgdet_future_1_epoch_0
Settings
Action Genome Scenes [AGS] (~sgdet)
Download the required checkpoints from here
Partially Grounded Action Genome Scenes [PGAGS] (~sgcls)
Download the required checkpoints from here
Grounded Action Genome Scenes [GAGS] (~predcls)
Download the required checkpoints from here
Instructions to run
Please see the scripts/training for Python modules.
Please see the scripts/tests for testing Python modules.
Citation
@InProceedings{peddi_et_al_scene_sayer_2024,
author="Peddi, Rohith
and Singh, Saksham
and Saurabh
and Singla, Parag
and Gogate, Vibhav",
editor="Leonardis, Ale{\v{s}}
and Ricci, Elisa
and Roth, Stefan
and Russakovsky, Olga
and Sattler, Torsten
and Varol, G{\"u}l",
title="Towards Scene Graph Anticipation",
booktitle="Computer Vision -- ECCV 2024",
year="2025",
publisher="Springer Nature Switzerland",
address="Cham",
pages="159--175",
isbn="978-3-031-73223-2"
}