Home

Awesome

<h1 align=center> Towards Scene Graph Anticipation </h1> <p align=center> Rohith Peddi, Saksham Singh, Saurabh, Parag Singla, Vibhav Gogate </p> <div align=center> <a src="https://img.shields.io/badge/project-website-green" href=""> <img src="https://img.shields.io/badge/project-website-green"> </a> <a src="https://img.shields.io/badge/paper-arxiv-red" href="https://arxiv.org/pdf/2403.04899v1.pdf"> <img src="https://img.shields.io/badge/paper-arxiv-red"> </a> <a src="https://img.shields.io/badge/bibtex-citation-blue" href=""> <img src="https://img.shields.io/badge/bibtex-citation-blue"> </a> </div> <p align="center"> (This page is under continuous update) </p>

UPDATE

Sep 30th 2024: Released pre-trained models and updated code.

Aug 2024: Our submission is accepted as an Oral Presentation in ECCV.

July 2024: Towards Scene Graph Anticipation was accepted at ECCV 2024.

Mar 2024: Released code for the paper


<h3 align=center> TASK PICTURE </h3>

TaskPicture


<h3 align=center> TECHNICAL APPROACH </h3>

TechnicalApproach


ACKNOWLEDGEMENTS

This code is based on the following awesome repositories. We thank all the authors for releasing their code.

  1. STTran
  2. DSG-DETR
  3. Tempura
  4. TorchDiffEq
  5. TorchDyn

SETUP

Dataset Preparation

Estimated time: 10 hours

Follow the instructions from here

Download Charades videos data/ag/videos

Download all action genome annotations data/ag/annotations

Dump all frames data/ag/frames

Change the corresponding data file paths in datasets/action_genome/tools/dump_frames.py

Download object_bbox_and_relationship_filtersmall.pkl from here and place it in the data loader folder

Install required libraries

conda create -n sga python=3.7 pip
conda activate sga
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
pip install -r requirements.txt

Setup

Build draw_rectangles modules

cd lib/draw_rectangles

Remove any previous builds

rm -rf build/
rm -rf *.so
rm -rf *.c
rm -rf *.pyd

Build the module

python setup.py build_ext --inplace
cd ..

Add the path to the current directory to the PYTHONPATH

conda develop draw_rectangles/

Build bbox modules

cd fpn/box_intersections_cpu

Remove any previous builds

rm -rf build/
rm -rf *.so
rm -rf *.c
rm -rf *.pyd

Build the module

python setup.py build_ext --inplace
cd ..

Add the path to the current directory to the PYTHONPATH

conda develop fpn/box_intersections_cpu/

fasterRCNN model

Remove any previous builds

cd fastRCNN/lib
rm -rf build/

Change the folder paths in 'fasterRCNN/lib/faster_rcnn.egg.info/SOURCES.txt' to the current directory

python setup.py build develop

If there are any errors, check gcc version Works for 9.x.x

Follow this for changing gcc version

Download pretrained fasterRCNN model here and place in fasterRCNN/models/


CHECKPOINTS

Method NameCheckpoint method Name
STTran+sttran_ant
DSGDetr+dsgdetr_ant
STTran++sttran_gen_ant
DSGDetr++dsgdetr_gen_ant
SceneSayerODEode
SceneSayerSDEsde

Please find the checkpoints with the following name structure.

<CKPT_METHOD_NAME>_<MODE>_future_<#TRAIN_FUTURE_FRAMES>_epoch_<#STORED_EPOCH>.tar

Eg:

dsgdetr_ant_sgdet_future_3_epoch_0

ode_sgdet_future_1_epoch_0

Settings

Action Genome Scenes [AGS] (~sgdet)

Download the required checkpoints from here

Partially Grounded Action Genome Scenes [PGAGS] (~sgcls)

Download the required checkpoints from here

Grounded Action Genome Scenes [GAGS] (~predcls)

Download the required checkpoints from here


Instructions to run

Please see the scripts/training for Python modules.

Please see the scripts/tests for testing Python modules.


Citation

@InProceedings{peddi_et_al_scene_sayer_2024,
    author="Peddi, Rohith
    and Singh, Saksham
    and Saurabh
    and Singla, Parag
    and Gogate, Vibhav",
    editor="Leonardis, Ale{\v{s}}
    and Ricci, Elisa
    and Roth, Stefan
    and Russakovsky, Olga
    and Sattler, Torsten
    and Varol, G{\"u}l",
    title="Towards Scene Graph Anticipation",
    booktitle="Computer Vision -- ECCV 2024",
    year="2025",
    publisher="Springer Nature Switzerland",
    address="Cham",
    pages="159--175",
    isbn="978-3-031-73223-2"
}