Home

Awesome

FoolNLTK

A Chinese word processing toolkit

Chinese document

Features

Getting Started

*** 2020/2/16 *** update: use bert model train and export model to deploy, chinese train documentation

To download and build FoolNLTK, type:

get clone https://github.com/rockyzhengwu/FoolNLTK.git
cd FoolNLTK/train

For detailed instructions

Installation

pip install foolnltk

Usage Intructions

For Participles:
import fool

text = "一个傻子在北京"
print(fool.cut(text))
# ['一个', '傻子', '在', '北京']

For participle segmentations, specify a -b parameter to increase the number of lines segmented every run.

python -m fool [filename]
User-defined dictionary

The format of the dictionary is as follows: the higher the weight of a word, and the longer the word length is, the more likely the word is to appear. Word weight value should be greater than 1。

难受香菇 10
什么鬼 10
分词工具 10
北京 10
北京天安门 10

To load the dictionary:

import fool
fool.load_userdict(path)
text = ["我在北京天安门看你难受香菇", "我在北京晒太阳你在非洲看雪"]
print(fool.cut(text))
#[['我', '在', '北京', '天安门', '看', '你', '难受', '香菇'],
# ['我', '在', '北京', '晒太阳', '你', '在', '非洲', '看', '雪']]

To delete the dictionary

fool.delete_userdict();
POS tagging
import fool

text = ["一个傻子在北京"]
print(fool.pos_cut(text))
#[[('一个', 'm'), ('傻子', 'n'), ('在', 'p'), ('北京', 'ns')]]
Entity Recognition
import fool 

text = ["一个傻子在北京","你好啊"]
words, ners = fool.analysis(text)
print(ners)
#[[(5, 8, 'location', '北京')]]

Versions in Other languages

Note