Awesome
Aircap_Pose_Estimator
Get this repo:
git clone https://github.com/robot-perception-group/Aircap_Pose_Estimator.git
Data
- Go to https://aircapdata.is.tue.mpg.de, register and login.
- Download AirCap-Pose_Estimator-minimaldata from https://aircapdata.is.tue.mpg.de/downloads
- Extract the contents (directory named "data") to the repo dir.
Install Requirements
-
Python2.7
-
ROS Melodic [http://wiki.ros.org/melodic]
-
Other requirementas
pip install -r requirements.txt
-
torchgeometry v0.1.0
git clone https://github.com/arraiyopensource/kornia.git cd kornia git checkout v0.1.0 python setup.py install
-
Download SMPL from [http://smpl.is.tue.mpg.de/] and extract its content in the parent directory i.e. Aircap_Pose_Estimator/
optional requirements
- Mayavi for results visualization. Install Mayavi for Python2.7 from https://docs.enthought.com/mayavi/mayavi/installation.html#installing-with-pip
Run Aircap_Pose_Estimator demo
- run Aircap_Pose_Estimator demo as in paper
python fittingscript.py /path/to/result/directory
- results will be saved in /path/to/result/directory. Mean error for each joint will be in the file /path/to/result/directory/final_err_res.npy
- To visualize results, execute
python viz_res.py /path/to/result/directory
to launch the visualization of results alongwith the ground truth.