Awesome
PS-Dataset
A Large Dataset for improving Patch Matching
Using Pre-Trained Model
Using Our Dataset
[Added Full Resolution RGB Images]
Link to paper -
https://arxiv.org/abs/1801.01466
Contributors -
Rahul Mitra, Nehal Doiphode, Utkarsh Gautam, Sanath Narayan, Shuaib Ahmed, Sharat Chandran, Arjun Jain
Sample image pairs from dataset
Image pair showing illumination variation
<br />
Image pair showing scale variation
<br />
Image pair showing viewpoint variation
<br />
Results -
Performance comparison for patch retrieval task on HPatches dataset.
Method\Noise | Easy | Hard | Tough | Mean |
---|---|---|---|---|
SIFT | 64.6 | 37.4 | 22.7 | 41.7 |
DeepDesc | 67.2 | 52.2 | 37.8 | 52.4 |
Tfeat | 68.4 | 50.8 | 34.7 | 51.3 |
Hardnet+ | 79.7 | 68.7 | 52.6 | 66.7 |
Hardnet-PS | 82.5 | 78.0 | 69.1 | 76.5 |
Performance comparison for image matching task on Fountain-P11 scene
Method\Baseline | Narrow | Wide | Very-wide | Mean |
---|---|---|---|---|
DeepDesc | 76.3 | 40.8 | 9.2 | 40.0 |
Tfeat | 86.6 | 62.8 | 21.9 | 57.1 |
Hardnet+ | 92.4 | 83.2 | 35.0 | 70.2 |
Hardnet-PS | 92.8 | 85.3 | 47.0 | 75.0 |
Performance comparison for image matching task on Herzjesu-P8 scene
Method\Baseline | Narrow | Wide | Mean |
---|---|---|---|
DeepDesc | 64.4 | 13.1 | 35.1 |
Tfeat | 76.6 | 27.4 | 48.5 |
Hardnet+ | 85.1 | 44.5 | 61.9 |
Hardnet-PS | 85.1 | 50.6 | 65.4 |
Scene statistics-
Statistics and parameters for each scene in the training set
Scene Id | No. images | No. points | No. Patches | MIN_V_TH | MAX_V_TH | No. Pairs |
---|---|---|---|---|---|---|
11 | 155 | 5724 | 31174 | 10° | 50° | 59098 |
13 | 436 | 143150 | 788401 | 5° | 45° | 1447833 |
14 | 315 | 115183 | 728302 | 10° | 50° | 1257142 |
15 | 239 | 69725 | 395021 | 10° | 50° | 733752 |
16 | 214 | 14634 | 94585 | 10° | 50° | 161737 |
20 | 381 | 41524 | 329980 | 10° | 50° | 702957 |
24 | 274 | 121992 | 788657 | 10° | 50° | 1713912 |
30 | 345 | 150087 | 760203 | 10° | 50° | 603327 |
34 | 142 | 7353 | 32198 | 10° | 50° | 52460 |
36 | 278 | 68656 | 395547 | 2° | 45° | 361799 |
41 | 268 | 29308 | 181515 | 10° | 50° | 372813 |
49 | 219 | 69301 | 346042 | 10° | 70° | 325492 |
50 | 302 | 61846 | 235538 | 10° | 50° | 294323 |
51 | 251 | 97293 | 620192 | 10° | 50° | 692386 |
53 | 269 | 80025 | 532245 | 10° | 50° | 1399146 |
65 | 153 | 86016 | 227226 | 4° | 72° | 202294 |
66 | 232 | 142459 | 426105 | 10° | 72° | 411762 |
67 | 98 | 37412 | 279194 | 3° | 50° | 1372920 |
71 | 309 | 65116 | 457196 | 10° | 50° | 1111475 |
74 | 207 | 51107 | 320927 | 10° | 50° | 662981 |
76 | 254 | 93127 | 535378 | 10° | 50° | 1172380 |
89 | 214 | 63498 | 641700 | 15° | 50° | 1503677 |
90 | 388 | 92334 | 731818 | 15° | 50° | 811130 |
91 | 182 | 78961 | 750676 | 12° | 50° | 1664135 |
95 | 201 | 21677 | 106001 | 10° | 72° | 110641 |
Statistics and parameters for each scene in the validation set
Scene Id | No. images | No. points | No. Patches | MIN_V_TH | MAX_V_TH | No. Pairs |
---|---|---|---|---|---|---|
4 | 264 | 107549 | 602331 | 10° | 50° | 965990 |
23 | 249 | 66492 | 328555 | 10° | 50° | 576180 |
31 | 262 | 25451 | 164984 | 10° | 50° | 147734 |
44 | 87 | 57944 | 157953 | 3° | 72° | 98134 |
88 | 99 | 4850 | 54781 | 5° | 50° | 235524 |