Awesome
SDDNet_ACMMM23
Runmin Cong, Yuchen Guan, Jinpeng Chen, Wei Zhang, Yao Zhao, and Sam Kwong, SDDNet: Style-guided dual-layer disentanglement network for shadow detection, ACM Multimedia (ACM MM), 2023. In Press.
Network
Our overall framework:
Requirement
Pleasure configure the environment according to the given version:
- python 3.6.10
- pytorch 1.10.1
- cudatoolkit 11.1
- torchvision 0.11.2
- tensorboard 2.3.0
- opencv-python 3.4.2
- PIL 7.2.0
- pydensecrf 1.0rc3
- numpy 1.18.5
We also provide ".yaml" files for conda environment configuration, you can use conda env create -f env.yaml
to create a required environment.
ResNext101 has been adopted, please put resnext_101_32x4d.pth
in the SDDNet/resnext
directory. You can download the model from [Link], code: mvpl
.
Preparation
Please follow this structure to inspect the code:
├── ISTD_Dataset
├── test
├── train
├── SBU-shadow
├── SBU-Test_rename
├── SBUTrain4KRecoveredSmall
├── UCF
├── train_A
├── train_B
├── SDDNet
├── ckpt
├── datasets
├── logs
├── networks
├── resnext
├── test
├── utils
├── crf_refine.py
├── modelsize_estimate.py
├── test.py
├── train.py
Training and Testing
Please Note : The input images folder is always named 'train_A' and the GT folder is always named 'train_B' for uniform processing.
Training command :
python train.py
Testing command :
The trained model for SDDNet can be download here: [Baidu Netdisk Link], code: mvpl
or [Google Drive Link].
python test.py
python crf_refine.py
<!-- ## Evaluation
We implement the widely-used metric, balanced error rate (BER). -->
Results
- Qualitative results: we provide the saliency maps, you can download them from [Baidu Netdisk Link], code:
mvpl
or [Google Drive Link]. - Quantitative results:
Contact Us
If you have any questions, please contact Runmin Cong at rmcong@sdu.edu.cn or Yuchen Guan at yuchenguan@bjtu.edu.cn.