Home

Awesome

<!-- # rLLM (**[Documentation](https://relationllm.readthedocs.io/en/latest/)**|**[Paper](https://arxiv.org/abs/2407.20157)**) --> <p align="center"><img src="docs/source/_static/rllm.png" alt="rLLM logo" width="300px" /></p> <p align="center"> | <a href="https://relationllm.readthedocs.io/en/latest/"><b>Documentation</b></a> | <a href="https://rllm-project.github.io/"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2407.20157"><b>Paper</b></a> | <a href="https://zhengwang100.github.io/pdf/rllm_introduction240811.pdf"><b>Slide</b></a> | </p>

Latest News 🔥


About

rLLM (relationLLM) is an easy-to-use Pytorch library for Relational Table Learning (RTL) with LLMs, by performing two key functions:

  1. Breaks down state-of-the-art GNNs, LLMs, and TNNs as standardized modules.
  2. Facilitates novel model building in a "combine, align, and co-train" way.
<p align="center"> <img width="400" height="310" src="https://zhengwang100.github.io/img/rllm/rllm_overview.png"> </p>

How to Try:

Let's run an RTL-type method BRIDGE as an example:

# cd ./examples
# set parameters if necessary

python bridge/bridge_tml1m.py
python bridge/bridge_tlf2k.py
python bridge/bridge_tacm12k.py

Highlight Features:

Implemented Methods

rLLM includes over 15 state-of-the-art GNN and TNN models, ideal for both standalone use and building RTL-type methods. Highlighted models include:

Todo List:

Citation

@article{rllm2024,
      title={rLLM: Relational Table Learning with LLMs}, 
      author={Weichen Li and Xiaotong Huang and Jianwu Zheng and Zheng Wang and Chaokun Wang and Li Pan and Jianhua Li},
      year={2024},
      eprint={2407.20157},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2407.20157}, 
}