Awesome
MICLe_Pytorch
Unoffitial PyTorch implementation of MICLe algorithm in the paper Azizi, S., Mustafa, B., Ryan, F., Beaver, Z., Freyberg, J., Deaton, J., ... & Norouzi, M. (2021). Big self-supervised models advance medical image classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3478-3488).
Requirements
- Python 3.7
- Pytorch 1.10.*
- Pytorch-ligntning 1.6.*
- lightly 1.2.*
- Pillow 8.4.*
Usage
1. Prepare the dataset
You can arrange your dataset in the following structure:
├── dataset
│ ├── subject 1
│ │ ├── image 1
│ │ ├── image 2
│ │ ├── ...
│ ├── subject 2
│ │ ├── image 1
│ │ ├── image 2
│ │ ├── ...
│ ├── ...
To train, run the following command with the path to your dataset:
python main.py --train_dir_path /your/path/train_dataset
You can also specify the hyperparameters in the command line.
The model will be saved as a .pth in your project directory.